Pré-algèbre Exemples

Trouver trois solutions de couples ordonnés -x+2y=6
Étape 1
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Divisez par .
Étape 2
Choisissez toute valeur pour qui est dans le domaine pour l’insérer dans l’équation.
Étape 3
Choisissez pour remplacer pour déterminer la paire ordonnée.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Supprimez les parenthèses.
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Divisez par .
Étape 3.2.2
Additionnez et .
Étape 3.3
Utilisez les valeurs et pour former la paire ordonnée.
Étape 4
Choisissez pour remplacer pour déterminer la paire ordonnée.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Supprimez les parenthèses.
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.2
Associez et .
Étape 4.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Multipliez par .
Étape 4.2.4.2
Additionnez et .
Étape 4.3
Utilisez les valeurs et pour former la paire ordonnée.
Étape 5
Choisissez pour remplacer pour déterminer la paire ordonnée.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Supprimez les parenthèses.
Étape 5.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Divisez par .
Étape 5.2.2
Additionnez et .
Étape 5.3
Utilisez les valeurs et pour former la paire ordonnée.
Étape 6
Ce sont trois solutions possibles à l’équation.
Étape 7