Algèbre linéaire Exemples

Trouver le déterminant [[x,y,z],[x^2,y^2,z^2],[x^3,y^3,z^3]]
Étape 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Consider the corresponding sign chart.
Étape 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 1.3
The minor for is the determinant with row and column deleted.
Étape 1.4
Multiply element by its cofactor.
Étape 1.5
The minor for is the determinant with row and column deleted.
Étape 1.6
Multiply element by its cofactor.
Étape 1.7
The minor for is the determinant with row and column deleted.
Étape 1.8
Multiply element by its cofactor.
Étape 1.9
Add the terms together.
Étape 2
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 3
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 4
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Appliquez la propriété distributive.
Étape 5.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.3
Appliquez la propriété distributive.
Étape 5.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Multipliez par .
Étape 5.4.2
Multipliez par .
Étape 5.5
Appliquez la propriété distributive.
Étape 5.6
Réécrivez en utilisant la commutativité de la multiplication.