Algèbre linéaire Exemples

Trouver les valeurs propres [[-4,0,1],[3,-6,3],[1,0,-4]]
Étape 1
Définissez la formule pour déterminer l’équation caractéristique .
Étape 2
La matrice d’identité ou matrice d’unité de taille est la matrice carrée avec les uns sur la diagonale principale et les zéros ailleurs.
Étape 3
Remplacez les valeurs connues dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par .
Étape 3.2
Remplacez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par chaque élément de la matrice.
Étape 4.1.2
Simplifiez chaque élément dans la matrice.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Multipliez par .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.4.1
Multipliez par .
Étape 4.1.2.4.2
Multipliez par .
Étape 4.1.2.5
Multipliez par .
Étape 4.1.2.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.6.1
Multipliez par .
Étape 4.1.2.6.2
Multipliez par .
Étape 4.1.2.7
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.7.1
Multipliez par .
Étape 4.1.2.7.2
Multipliez par .
Étape 4.1.2.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.8.1
Multipliez par .
Étape 4.1.2.8.2
Multipliez par .
Étape 4.1.2.9
Multipliez par .
Étape 4.2
Additionnez les éléments correspondants.
Étape 4.3
Simplify each element.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Additionnez et .
Étape 4.3.2
Additionnez et .
Étape 4.3.3
Additionnez et .
Étape 4.3.4
Additionnez et .
Étape 4.3.5
Additionnez et .
Étape 4.3.6
Additionnez et .
Étape 5
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Consider the corresponding sign chart.
Étape 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 5.1.3
The minor for is the determinant with row and column deleted.
Étape 5.1.4
Multiply element by its cofactor.
Étape 5.1.5
The minor for is the determinant with row and column deleted.
Étape 5.1.6
Multiply element by its cofactor.
Étape 5.1.7
The minor for is the determinant with row and column deleted.
Étape 5.1.8
Multiply element by its cofactor.
Étape 5.1.9
Add the terms together.
Étape 5.2
Multipliez par .
Étape 5.3
Multipliez par .
Étape 5.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.4.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.1.1
Appliquez la propriété distributive.
Étape 5.4.2.1.1.2
Appliquez la propriété distributive.
Étape 5.4.2.1.1.3
Appliquez la propriété distributive.
Étape 5.4.2.1.2
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.2.1.1
Multipliez par .
Étape 5.4.2.1.2.1.2
Multipliez par .
Étape 5.4.2.1.2.1.3
Multipliez par .
Étape 5.4.2.1.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.4.2.1.2.1.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.2.1.5.1
Déplacez .
Étape 5.4.2.1.2.1.5.2
Multipliez par .
Étape 5.4.2.1.2.1.6
Multipliez par .
Étape 5.4.2.1.2.1.7
Multipliez par .
Étape 5.4.2.1.2.2
Additionnez et .
Étape 5.4.2.1.3
Multipliez par .
Étape 5.4.2.2
Soustrayez de .
Étape 5.4.2.3
Remettez dans l’ordre et .
Étape 5.5
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1.1
Additionnez et .
Étape 5.5.1.2
Additionnez et .
Étape 5.5.2
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 5.5.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1
Multipliez par .
Étape 5.5.3.2
Multipliez par .
Étape 5.5.3.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.3.1
Déplacez .
Étape 5.5.3.3.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.3.2.1
Élevez à la puissance .
Étape 5.5.3.3.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.5.3.3.3
Additionnez et .
Étape 5.5.3.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.5.3.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.5.1
Déplacez .
Étape 5.5.3.5.2
Multipliez par .
Étape 5.5.3.6
Multipliez par .
Étape 5.5.3.7
Multipliez par .
Étape 5.5.4
Soustrayez de .
Étape 5.5.5
Soustrayez de .
Étape 5.5.6
Déplacez .
Étape 5.5.7
Déplacez .
Étape 5.5.8
Remettez dans l’ordre et .
Étape 6
Définissez le polynôme caractéristique égal à pour déterminer les valeurs propres .
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.1
Factorisez à partir de .
Étape 7.1.1.2
Factorisez à partir de .
Étape 7.1.1.3
Factorisez à partir de .
Étape 7.1.1.4
Réécrivez comme .
Étape 7.1.1.5
Factorisez à partir de .
Étape 7.1.1.6
Factorisez à partir de .
Étape 7.1.1.7
Factorisez à partir de .
Étape 7.1.2
Factorisez en utilisant le test des racines rationnelles.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 7.1.2.2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 7.1.2.3
Remplacez et simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.3.1
Remplacez dans le polynôme.
Étape 7.1.2.3.2
Élevez à la puissance .
Étape 7.1.2.3.3
Élevez à la puissance .
Étape 7.1.2.3.4
Multipliez par .
Étape 7.1.2.3.5
Additionnez et .
Étape 7.1.2.3.6
Multipliez par .
Étape 7.1.2.3.7
Soustrayez de .
Étape 7.1.2.3.8
Additionnez et .
Étape 7.1.2.4
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 7.1.2.5
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.5.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
++++
Étape 7.1.2.5.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
++++
Étape 7.1.2.5.3
Multipliez le nouveau terme du quotient par le diviseur.
++++
++
Étape 7.1.2.5.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
++++
--
Étape 7.1.2.5.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
++++
--
+
Étape 7.1.2.5.6
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
++++
--
++
Étape 7.1.2.5.7
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
+
++++
--
++
Étape 7.1.2.5.8
Multipliez le nouveau terme du quotient par le diviseur.
+
++++
--
++
++
Étape 7.1.2.5.9
L’expression doit être soustraite du dividende, alors changez tous les signes dans
+
++++
--
++
--
Étape 7.1.2.5.10
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
+
++++
--
++
--
+
Étape 7.1.2.5.11
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
+
++++
--
++
--
++
Étape 7.1.2.5.12
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
++
++++
--
++
--
++
Étape 7.1.2.5.13
Multipliez le nouveau terme du quotient par le diviseur.
++
++++
--
++
--
++
++
Étape 7.1.2.5.14
L’expression doit être soustraite du dividende, alors changez tous les signes dans
++
++++
--
++
--
++
--
Étape 7.1.2.5.15
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
++
++++
--
++
--
++
--
Étape 7.1.2.5.16
Comme le reste est , la réponse finale est le quotient.
Étape 7.1.2.6
Écrivez comme un ensemble de facteurs.
Étape 7.1.3
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.3.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.3.1.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.3.1.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.1.3.1.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 7.1.3.1.2
Supprimez les parenthèses inutiles.
Étape 7.1.3.2
Supprimez les parenthèses inutiles.
Étape 7.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Définissez égal à .
Étape 7.3.2
Soustrayez des deux côtés de l’équation.
Étape 7.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Définissez égal à .
Étape 7.4.2
Soustrayez des deux côtés de l’équation.
Étape 7.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Définissez égal à .
Étape 7.5.2
Soustrayez des deux côtés de l’équation.
Étape 7.6
La solution finale est l’ensemble des valeurs qui rendent vraie.