Algèbre linéaire Exemples

Trouver l'ensemble des puissances A=(1,2,3,4,5,6)
A=(1,2,3,4,5,6)A=(1,2,3,4,5,6)
Étape 1
L’ensemble des parties d’un ensemble SS est l’ensemble de tous les sous-ensembles de SS. Le premier sous-ensemble sera l’ensemble SS lui-même. Déterminez ensuite tous les sous-ensembles contenant un élément de moins (dans ce cas 55 éléments). Continuez ce processus jusqu’à ce que vous trouviez tous les sous-ensembles comportant un ensemble vide.
Ensemble des parties d’un ensemble = {{1,2,3,4,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,3,4,5},{1,3,4,6},{1,3,5,6},{1,4,5,6},{2,3,4,5},{2,3,4,6},{2,3,5,6},{2,4,5,6},{3,4,5,6},{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,3,6},{1,4,5},{1,4,6},{1,5,6},{2,3,4},{2,3,5},{2,3,6},{2,4,5},{2,4,6},{2,5,6},{3,4,5},{3,4,6},{3,5,6},{4,5,6},{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},{1},{2},{3},{4},{5},{6},{}}{{1,2,3,4,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,3,4,5},{1,3,4,6},{1,3,5,6},{1,4,5,6},{2,3,4,5},{2,3,4,6},{2,3,5,6},{2,4,5,6},{3,4,5,6},{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,3,6},{1,4,5},{1,4,6},{1,5,6},{2,3,4},{2,3,5},{2,3,6},{2,4,5},{2,4,6},{2,5,6},{3,4,5},{3,4,6},{3,5,6},{4,5,6},{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},{1},{2},{3},{4},{5},{6},{}}
 [x2  12  π  xdx ]  x2  12  π  xdx