Entrer un problème...
Ensembles finis Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3
Simplifiez .
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Factorisez à l’aide de la méthode AC.
Étape 4.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.4
Définissez égal à et résolvez .
Étape 4.4.1
Définissez égal à .
Étape 4.4.2
Soustrayez des deux côtés de l’équation.
Étape 4.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6