Ensembles finis Exemples

Déterminer s'il y a linéarité 2^(2x)-3^(2y)=55
Étape 1
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.2.2.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1.1
Divisez par .
Étape 1.2.3.1.2
La division de deux valeurs négatives produit une valeur positive.
Étape 1.2.3.1.3
Divisez par .
Étape 1.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 1.4
Développez en déplaçant hors du logarithme.
Étape 1.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Divisez chaque terme dans par .
Étape 1.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1.1
Annulez le facteur commun.
Étape 1.5.2.1.2
Réécrivez l’expression.
Étape 1.5.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.2.1
Annulez le facteur commun.
Étape 1.5.2.2.2
Divisez par .
Étape 2
A linear equation is an equation of a straight line, which means that the degree of a linear equation must be or for each of its variables. In this case, the degree of the variable in the equation violates the linear equation definition, which means that the equation is not a linear equation.
Pas linéaire