Ensembles finis Exemples

Résoudre en factorisant (x+2)^3=x^2+8
Étape 1
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez le théorème du binôme.
Étape 2.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Multipliez par .
Étape 2.1.2.2
Élevez à la puissance .
Étape 2.1.2.3
Multipliez par .
Étape 2.1.2.4
Élevez à la puissance .
Étape 2.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez de .
Étape 2.2.2
Additionnez et .
Étape 2.3
Soustrayez de .
Étape 3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Factorisez à partir de .
Étape 3.3
Factorisez à partir de .
Étape 3.4
Factorisez à partir de .
Étape 3.5
Factorisez à partir de .
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Définissez égal à .
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 6.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1.1
Élevez à la puissance .
Étape 6.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1.2.1
Multipliez par .
Étape 6.2.3.1.2.2
Multipliez par .
Étape 6.2.3.1.3
Soustrayez de .
Étape 6.2.3.1.4
Réécrivez comme .
Étape 6.2.3.1.5
Réécrivez comme .
Étape 6.2.3.1.6
Réécrivez comme .
Étape 6.2.3.2
Multipliez par .
Étape 6.2.4
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.4.1.1
Élevez à la puissance .
Étape 6.2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.4.1.2.1
Multipliez par .
Étape 6.2.4.1.2.2
Multipliez par .
Étape 6.2.4.1.3
Soustrayez de .
Étape 6.2.4.1.4
Réécrivez comme .
Étape 6.2.4.1.5
Réécrivez comme .
Étape 6.2.4.1.6
Réécrivez comme .
Étape 6.2.4.2
Multipliez par .
Étape 6.2.4.3
Remplacez le par .
Étape 6.2.4.4
Réécrivez comme .
Étape 6.2.4.5
Factorisez à partir de .
Étape 6.2.4.6
Factorisez à partir de .
Étape 6.2.4.7
Placez le signe moins devant la fraction.
Étape 6.2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.5.1.1
Élevez à la puissance .
Étape 6.2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.5.1.2.1
Multipliez par .
Étape 6.2.5.1.2.2
Multipliez par .
Étape 6.2.5.1.3
Soustrayez de .
Étape 6.2.5.1.4
Réécrivez comme .
Étape 6.2.5.1.5
Réécrivez comme .
Étape 6.2.5.1.6
Réécrivez comme .
Étape 6.2.5.2
Multipliez par .
Étape 6.2.5.3
Remplacez le par .
Étape 6.2.5.4
Réécrivez comme .
Étape 6.2.5.5
Factorisez à partir de .
Étape 6.2.5.6
Factorisez à partir de .
Étape 6.2.5.7
Placez le signe moins devant la fraction.
Étape 6.2.6
La réponse finale est la combinaison des deux solutions.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.