Ensembles finis Exemples

Trouver les racines (zéros) (-x^2)/((1+4x)^2)=5/4
Étape 1
Placez le signe moins devant la fraction.
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.4
a des facteurs de et .
Étape 2.5
Multipliez par .
Étape 2.6
Les facteurs pour sont , qui correspond à multiplié par lui-même fois.
se produit fois.
Étape 2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.8
Le plus petit multiple commun de certains nombres est le plus petit nombre dont les nombres sont des facteurs.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Annulez le facteur commun.
Étape 3.2.1.4
Réécrivez l’expression.
Étape 3.2.2
Multipliez par .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Factorisez à partir de .
Étape 3.3.1.2
Annulez le facteur commun.
Étape 3.3.1.3
Réécrivez l’expression.
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Réécrivez comme .
Étape 4.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Appliquez la propriété distributive.
Étape 4.1.2.2
Appliquez la propriété distributive.
Étape 4.1.2.3
Appliquez la propriété distributive.
Étape 4.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1.1
Multipliez par .
Étape 4.1.3.1.2
Multipliez par .
Étape 4.1.3.1.3
Multipliez par .
Étape 4.1.3.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.1.3.1.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1.5.1
Déplacez .
Étape 4.1.3.1.5.2
Multipliez par .
Étape 4.1.3.1.6
Multipliez par .
Étape 4.1.3.2
Additionnez et .
Étape 4.1.4
Appliquez la propriété distributive.
Étape 4.1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.1
Multipliez par .
Étape 4.1.5.2
Multipliez par .
Étape 4.1.5.3
Multipliez par .
Étape 4.2
Comme est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 4.3
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Ajoutez aux deux côtés de l’équation.
Étape 4.3.2
Additionnez et .
Étape 4.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1.1
Élevez à la puissance .
Étape 4.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1.2.1
Multipliez par .
Étape 4.6.1.2.2
Multipliez par .
Étape 4.6.1.3
Soustrayez de .
Étape 4.6.1.4
Réécrivez comme .
Étape 4.6.1.5
Réécrivez comme .
Étape 4.6.1.6
Réécrivez comme .
Étape 4.6.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1.7.1
Factorisez à partir de .
Étape 4.6.1.7.2
Réécrivez comme .
Étape 4.6.1.8
Extrayez les termes de sous le radical.
Étape 4.6.1.9
Déplacez à gauche de .
Étape 4.6.2
Multipliez par .
Étape 4.6.3
Simplifiez .
Étape 4.7
La réponse finale est la combinaison des deux solutions.
Étape 5