Entrer un problème...
Ensembles finis Exemples
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 3
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 4
Ajoutez le terme de chaque côté de l’équation.
Étape 5
Étape 5.1
Simplifiez le côté gauche.
Étape 5.1.1
Simplifiez chaque terme.
Étape 5.1.1.1
Appliquez la règle de produit à .
Étape 5.1.1.2
Élevez à la puissance .
Étape 5.1.1.3
Élevez à la puissance .
Étape 5.2
Simplifiez le côté droit.
Étape 5.2.1
Simplifiez .
Étape 5.2.1.1
Simplifiez chaque terme.
Étape 5.2.1.1.1
Appliquez la règle de produit à .
Étape 5.2.1.1.2
Élevez à la puissance .
Étape 5.2.1.1.3
Élevez à la puissance .
Étape 5.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.2.1.3.1
Multipliez par .
Étape 5.2.1.3.2
Multipliez par .
Étape 5.2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.1.5
Simplifiez le numérateur.
Étape 5.2.1.5.1
Multipliez par .
Étape 5.2.1.5.2
Additionnez et .
Étape 6
Factorisez le carré trinomial parfait en .
Étape 7
Étape 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 7.2
Simplifiez .
Étape 7.2.1
Réécrivez comme .
Étape 7.2.2
Simplifiez le numérateur.
Étape 7.2.2.1
Réécrivez comme .
Étape 7.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.2.3
Simplifiez le dénominateur.
Étape 7.2.3.1
Réécrivez comme .
Étape 7.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 7.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 7.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.3.2.3
Soustrayez de .
Étape 7.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 7.3.4.1
Soustrayez des deux côtés de l’équation.
Étape 7.3.4.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.3.4.3
Soustrayez de .
Étape 7.3.4.4
Divisez par .
Étape 7.3.5
La solution complète est le résultat des parties positive et négative de la solution.