Ensembles finis Exemples

Trouver le domaine base logarithmique 5 de 3x^(1/2)
log5(3x12)
Étape 1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Appliquez la règle xmn=nxm pour réécrire l’élévation à la puissance comme un radical.
log5(3x1)
Étape 1.2
Toute valeur élevée à 1 est la base elle-même.
log5(3x)
log5(3x)
Étape 2
Définissez l’argument dans log5(3x) supérieur à 0 pour déterminer où l’expression est définie.
3x>0
Étape 3
Résolvez x.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Pour retirer le radical du côté gauche de l’inégalité, élevez au carré les deux côtés de l’inégalité.
(3x)2>02
Étape 3.2
Simplifiez chaque côté de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Utilisez nax=axn pour réécrire x comme x12.
(3x12)2>02
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez (3x12)2.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Appliquez la règle de produit à 3x12.
32(x12)2>02
Étape 3.2.2.1.2
Élevez 3 à la puissance 2.
9(x12)2>02
Étape 3.2.2.1.3
Multipliez les exposants dans (x12)2.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, (am)n=amn.
9x122>02
Étape 3.2.2.1.3.2
Annulez le facteur commun de 2.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.2.1
Annulez le facteur commun.
9x122>02
Étape 3.2.2.1.3.2.2
Réécrivez l’expression.
9x1>02
9x1>02
9x1>02
Étape 3.2.2.1.4
Simplifiez
9x>02
9x>02
9x>02
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
L’élévation de 0 à toute puissance positive produit 0.
9x>0
9x>0
9x>0
Étape 3.3
Divisez chaque terme dans 9x>0 par 9 et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Divisez chaque terme dans 9x>0 par 9.
9x9>09
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de 9.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Annulez le facteur commun.
9x9>09
Étape 3.3.2.1.2
Divisez x par 1.
x>09
x>09
x>09
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Divisez 0 par 9.
x>0
x>0
x>0
Étape 3.4
Déterminez le domaine de 3x.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Définissez le radicande dans x supérieur ou égal à 0 pour déterminer où l’expression est définie.
x0
Étape 3.4.2
Le domaine est l’ensemble des valeurs de x qui rendent l’expression définie.
[0,)
[0,)
Étape 3.5
La solution se compose de tous les intervalles vrais.
x>0
x>0
Étape 4
Définissez le radicande dans x supérieur ou égal à 0 pour déterminer où l’expression est définie.
x0
Étape 5
Le domaine est l’ensemble des valeurs de x qui rendent l’expression définie.
Notation d’intervalle :
(0,)
Notation de constructeur d’ensemble :
{x|x>0}
Étape 6
 [x2  12  π  xdx ]