Entrer un problème...
Ensembles finis Exemples
Étape 1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 2
Étape 2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Étape 4.2.2.1
Annulez le facteur commun de .
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Étape 4.2.3.1
Placez le signe moins devant la fraction.
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 6