Entrer un problème...
Ensembles finis Exemples
Étape 1
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Étape 1.2.1
Simplifiez .
Étape 1.2.1.1
Simplifiez chaque terme.
Étape 1.2.1.1.1
Appliquez la propriété distributive.
Étape 1.2.1.1.2
Multipliez par .
Étape 1.2.1.1.3
L’élévation de à toute puissance positive produit .
Étape 1.2.1.1.4
Multipliez par .
Étape 1.2.1.2
Additionnez et .
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Étape 1.2.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.2.2.3
Simplifiez le côté droit.
Étape 1.2.2.3.1
Divisez par .
Étape 1.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.2.4
Simplifiez .
Étape 1.2.4.1
Réécrivez comme .
Étape 1.2.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.2.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine :
abscisse(s) à l’origine :
Étape 2
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Simplifiez chaque terme.
Étape 2.2.1.1.1
L’élévation de à toute puissance positive produit .
Étape 2.2.1.1.2
Multipliez par .
Étape 2.2.1.1.3
L’élévation de à toute puissance positive produit .
Étape 2.2.1.1.4
Soustrayez de .
Étape 2.2.1.1.5
Multipliez par .
Étape 2.2.1.2
Soustrayez de .
Étape 2.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.2.1
Divisez chaque terme dans par .
Étape 2.2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.2.1.2
Divisez par .
Étape 2.2.2.3
Simplifiez le côté droit.
Étape 2.2.2.3.1
Divisez par .
Étape 2.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.2.4
Simplifiez .
Étape 2.2.4.1
Réécrivez comme .
Étape 2.2.4.2
Réécrivez comme .
Étape 2.2.4.3
Réécrivez comme .
Étape 2.2.4.4
Réécrivez comme .
Étape 2.2.4.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.4.6
Déplacez à gauche de .
Étape 2.2.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine :
ordonnée(s) à l’origine :
Étape 4