Entrer un problème...
Ensembles finis Exemples
Étape 1
Étape 1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Réécrivez comme plus
Étape 1.1.3
Appliquez la propriété distributive.
Étape 1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2
Étape 2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme plus
Étape 2.1.3
Appliquez la propriété distributive.
Étape 2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3
Étape 3.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Réécrivez comme plus
Étape 3.1.3
Appliquez la propriété distributive.
Étape 3.1.4
Multipliez par .
Étape 3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 5
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 6
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 8
Le facteur pour est lui-même.
se produit fois.
Étape 9
Le facteur pour est lui-même.
se produit fois.
Étape 10
Le facteur pour est lui-même.
se produit fois.
Étape 11
Le facteur pour est lui-même.
se produit fois.
Étape 12
Le facteur pour est lui-même.
se produit fois.
Étape 13
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.