Ensembles finis Exemples

Résoudre par substitution x^2+4y^2=20 , 2x-3y-2=0
,
Étape 1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.1.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Divisez par .
Étape 2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Réécrivez comme .
Étape 2.2.1.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.2.1
Appliquez la propriété distributive.
Étape 2.2.1.1.2.2
Appliquez la propriété distributive.
Étape 2.2.1.1.2.3
Appliquez la propriété distributive.
Étape 2.2.1.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.3.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.3.1.1.1
Multipliez par .
Étape 2.2.1.1.3.1.1.2
Multipliez par .
Étape 2.2.1.1.3.1.1.3
Élevez à la puissance .
Étape 2.2.1.1.3.1.1.4
Élevez à la puissance .
Étape 2.2.1.1.3.1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.1.1.3.1.1.6
Additionnez et .
Étape 2.2.1.1.3.1.1.7
Multipliez par .
Étape 2.2.1.1.3.1.2
Multipliez par .
Étape 2.2.1.1.3.1.3
Multipliez par .
Étape 2.2.1.1.3.1.4
Multipliez par .
Étape 2.2.1.1.3.2
Additionnez et .
Étape 2.2.1.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.4.1
Annulez le facteur commun.
Étape 2.2.1.1.4.2
Réécrivez l’expression.
Étape 2.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.1.3
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.1
Associez et .
Étape 2.2.1.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.1.1.1
Factorisez à partir de .
Étape 2.2.1.4.1.1.2
Factorisez à partir de .
Étape 2.2.1.4.1.1.3
Factorisez à partir de .
Étape 2.2.1.4.1.2
Multipliez par .
Étape 2.2.1.4.1.3
Additionnez et .
Étape 2.2.1.4.2
Déplacez à gauche de .
Étape 3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Multipliez par le plus petit dénominateur commun , puis simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Appliquez la propriété distributive.
Étape 3.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Multipliez par .
Étape 3.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Annulez le facteur commun.
Étape 3.2.2.2.2
Réécrivez l’expression.
Étape 3.2.2.3
Multipliez par .
Étape 3.2.3
Remettez dans l’ordre et .
Étape 3.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1.1
Élevez à la puissance .
Étape 3.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1.2.1
Multipliez par .
Étape 3.5.1.2.2
Multipliez par .
Étape 3.5.1.3
Additionnez et .
Étape 3.5.1.4
Réécrivez comme .
Étape 3.5.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.5.2
Multipliez par .
Étape 3.5.3
Simplifiez .
Étape 3.6
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.1
Élevez à la puissance .
Étape 3.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.2.1
Multipliez par .
Étape 3.6.1.2.2
Multipliez par .
Étape 3.6.1.3
Additionnez et .
Étape 3.6.1.4
Réécrivez comme .
Étape 3.6.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.6.2
Multipliez par .
Étape 3.6.3
Simplifiez .
Étape 3.6.4
Remplacez le par .
Étape 3.6.5
Additionnez et .
Étape 3.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.1
Élevez à la puissance .
Étape 3.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.2.1
Multipliez par .
Étape 3.7.1.2.2
Multipliez par .
Étape 3.7.1.3
Additionnez et .
Étape 3.7.1.4
Réécrivez comme .
Étape 3.7.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.7.4
Remplacez le par .
Étape 3.7.5
Soustrayez de .
Étape 3.7.6
Divisez par .
Étape 3.8
La réponse finale est la combinaison des deux solutions.
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Associez et .
Étape 4.2.1.1.2
Multipliez par .
Étape 4.2.1.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.2.1.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.4.1
Factorisez à partir de .
Étape 4.2.1.1.4.2
Annulez le facteur commun.
Étape 4.2.1.1.4.3
Réécrivez l’expression.
Étape 4.2.1.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.2.3
Additionnez et .
Étape 5
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Multipliez par .
Étape 5.2.1.2
Divisez par .
Étape 5.2.1.3
Additionnez et .
Étape 6
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 8