Entrer un problème...
Ensembles finis Exemples
,
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Simplifiez chaque terme.
Étape 2.2.1.1.1
Appliquez la propriété distributive.
Étape 2.2.1.1.2
Annulez le facteur commun de .
Étape 2.2.1.1.2.1
Factorisez à partir de .
Étape 2.2.1.1.2.2
Annulez le facteur commun.
Étape 2.2.1.1.2.3
Réécrivez l’expression.
Étape 2.2.1.1.3
Multipliez par .
Étape 2.2.1.1.4
Annulez le facteur commun de .
Étape 2.2.1.1.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.2.1.1.4.2
Factorisez à partir de .
Étape 2.2.1.1.4.3
Annulez le facteur commun.
Étape 2.2.1.1.4.4
Réécrivez l’expression.
Étape 2.2.1.1.5
Multipliez par .
Étape 2.2.1.2
Soustrayez de .
Étape 3
Étape 3.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.1.1
Ajoutez aux deux côtés de l’équation.
Étape 3.1.2
Additionnez et .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Divisez par .
Étape 4
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.2
Simplifiez l’expression.
Étape 4.2.1.2.1
Multipliez par .
Étape 4.2.1.2.2
Soustrayez de .
Étape 4.2.1.2.3
Divisez par .
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 7