Ensembles finis Exemples

Trouver les racines/zéros en cherchant les racines rationnelles avec le lemme de Gauss 3b^3-5b^2+2b
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2
Multipliez par .
Étape 4.1.3
L’élévation de à toute puissance positive produit .
Étape 4.1.4
Multipliez par .
Étape 4.1.5
Multipliez par .
Étape 4.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Additionnez et .
Étape 4.2.2
Additionnez et .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Ensuite, déterminez les racines du polynôme restant. Le degré du polynôme a été réduit de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
  
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
  
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
 
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
 
Étape 6.9
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.10
Simplifiez le polynôme quotient.
Étape 7
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Factorisez à partir de .
Étape 7.1.2
Réécrivez comme plus
Étape 7.1.3
Appliquez la propriété distributive.
Étape 7.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 7.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 7.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 8
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Factorisez à partir de .
Étape 8.1.2
Factorisez à partir de .
Étape 8.1.3
Factorisez à partir de .
Étape 8.1.4
Factorisez à partir de .
Étape 8.1.5
Factorisez à partir de .
Étape 8.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1.1
Factorisez à partir de .
Étape 8.2.1.1.2
Réécrivez comme plus
Étape 8.2.1.1.3
Appliquez la propriété distributive.
Étape 8.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 8.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 8.2.2
Supprimez les parenthèses inutiles.
Étape 9
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 10
Définissez égal à .
Étape 11
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Définissez égal à .
Étape 11.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Ajoutez aux deux côtés de l’équation.
Étape 11.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.2.1
Divisez chaque terme dans par .
Étape 11.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.2.2.1.1
Annulez le facteur commun.
Étape 11.2.2.2.1.2
Divisez par .
Étape 12
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Définissez égal à .
Étape 12.2
Ajoutez aux deux côtés de l’équation.
Étape 13
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 14