Entrer un problème...
Ensembles finis Exemples
Étape 1
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Ajoutez aux deux côtés de l’équation.
Étape 4
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 5
Consolidez les solutions.
Étape 6
Étape 6.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.2
Ajoutez aux deux côtés de l’équation.
Étape 6.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 7
Utilisez chaque racine pour créer des intervalles de test.
Étape 8
Étape 8.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 8.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 8.1.2
Remplacez par dans l’inégalité d’origine.
Étape 8.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 8.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 8.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 8.2.2
Remplacez par dans l’inégalité d’origine.
Étape 8.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 8.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 8.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 8.3.2
Remplacez par dans l’inégalité d’origine.
Étape 8.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 8.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 9
La solution se compose de tous les intervalles vrais.
Étape 10
Convertissez l’inégalité en une notation d’intervalle.
Étape 11