Ensembles finis Exemples

Resolva para x |6-x|=2
Étape 1
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 2
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Soustrayez de .
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.3.2.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Divisez par .
Étape 2.4
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Soustrayez des deux côtés de l’équation.
Étape 2.5.2
Soustrayez de .
Étape 2.6
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Divisez chaque terme dans par .
Étape 2.6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.6.2.2
Divisez par .
Étape 2.6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.3.1
Divisez par .
Étape 2.7
La solution complète est le résultat des parties positive et négative de la solution.