Ensembles finis Exemples

Resolva para x 2 logarithme de x- logarithme de 7 = logarithme de 63
Étape 1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 2.1.2
Utilisez la propriété du quotient des logarithmes, .
Étape 2.1.3
Utilisez la propriété du quotient des logarithmes, .
Étape 2.1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.5
Associez.
Étape 2.1.6
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.6.1
Multipliez par .
Étape 2.1.6.2
Multipliez par .
Étape 3
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Multipliez les deux côtés de l’équation par .
Étape 4.3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1.1
Annulez le facteur commun.
Étape 4.3.1.1.2
Réécrivez l’expression.
Étape 4.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Move the decimal point in to the left by places and increase the power of by .
Étape 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Réécrivez comme .
Étape 4.5.2
Évaluez la racine.
Étape 4.5.3
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.5.4
Élevez à la puissance .
Étape 4.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Excluez les solutions qui ne rendent pas vrai.
Étape 6
Le résultat peut être affiché en différentes formes.
Notation scientifique :
Forme développée :