Entrer un problème...
Ensembles finis Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Associez en une fraction.
Étape 2.1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.2
Simplifiez le numérateur.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.2.3
Simplifiez
Étape 2.2.3.1
Additionnez et .
Étape 2.2.3.2
Appliquez la propriété distributive.
Étape 2.2.3.3
Multipliez par .
Étape 2.2.3.4
Soustrayez de .
Étape 2.3
Simplifiez en factorisant.
Étape 2.3.1
Factorisez à partir de .
Étape 2.3.2
Réécrivez comme .
Étape 2.3.3
Factorisez à partir de .
Étape 2.3.4
Simplifiez l’expression.
Étape 2.3.4.1
Réécrivez comme .
Étape 2.3.4.2
Placez le signe moins devant la fraction.
Étape 3
Multipliez les deux côtés de l’équation par .
Étape 4
Étape 4.1
Simplifiez le côté gauche.
Étape 4.1.1
Annulez le facteur commun de .
Étape 4.1.1.1
Annulez le facteur commun.
Étape 4.1.1.2
Réécrivez l’expression.
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Multipliez .
Étape 4.2.1.1.1
Multipliez par .
Étape 4.2.1.1.2
Associez et .
Étape 4.2.1.2
Placez le signe moins devant la fraction.
Étape 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.1.1
Factorisez la puissance parfaite dans .
Étape 6.1.2
Factorisez la puissance parfaite dans .
Étape 6.1.3
Réorganisez la fraction .
Étape 6.1.4
Remettez dans l’ordre et .
Étape 6.1.5
Ajoutez des parenthèses.
Étape 6.1.6
Ajoutez des parenthèses.
Étape 6.2
Extrayez les termes de sous le radical.
Étape 6.3
Associez et .
Étape 7
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Ajoutez aux deux côtés de l’équation.
Étape 7.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.4
Ajoutez aux deux côtés de l’équation.
Étape 7.5
La solution complète est le résultat des parties positive et négative de la solution.