Ensembles finis Exemples

Resolva para x x^(-2/3)+x^(-1/3)-56=0
Étape 1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Placez le signe moins devant la fraction.
Étape 1.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.3
Placez le signe moins devant la fraction.
Étape 1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.2
Réécrivez l’expression.
Étape 3.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Factorisez à partir de .
Étape 3.2.1.2.2
Annulez le facteur commun.
Étape 3.2.1.2.3
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez par .
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez un facteur commun présent dans chaque terme.
Étape 4.2
Remplacez par .
Étape 4.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Supprimez les parenthèses.
Étape 4.3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1
Remettez l’expression dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1.1
Déplacez .
Étape 4.3.2.1.1.2
Remettez dans l’ordre et .
Étape 4.3.2.1.2
Factorisez à partir de .
Étape 4.3.2.1.3
Factorisez à partir de .
Étape 4.3.2.1.4
Réécrivez comme .
Étape 4.3.2.1.5
Factorisez à partir de .
Étape 4.3.2.1.6
Factorisez à partir de .
Étape 4.3.2.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.1.1
Factorisez à partir de .
Étape 4.3.2.2.1.1.2
Réécrivez comme plus
Étape 4.3.2.2.1.1.3
Appliquez la propriété distributive.
Étape 4.3.2.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.3.2.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.3.2.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4.3.2.2.2
Supprimez les parenthèses inutiles.
Étape 4.3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Définissez égal à .
Étape 4.3.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.2.2.1
Divisez chaque terme dans par .
Étape 4.3.4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.2.2.2.1.1
Annulez le facteur commun.
Étape 4.3.4.2.2.2.1.2
Divisez par .
Étape 4.3.4.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 4.3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Définissez égal à .
Étape 4.3.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.3.5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.2.2.1
Divisez chaque terme dans par .
Étape 4.3.5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.2.2.2.1.1
Annulez le facteur commun.
Étape 4.3.5.2.2.2.1.2
Divisez par .
Étape 4.3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4.4
Remplacez par .
Étape 4.5
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 4.5.2
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.5.2.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1.1.1.2.1
Annulez le facteur commun.
Étape 4.5.2.1.1.1.2.2
Réécrivez l’expression.
Étape 4.5.2.1.1.2
Simplifiez
Étape 4.5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.2.1.1.1
Appliquez la règle de produit à .
Étape 4.5.2.2.1.1.2
Appliquez la règle de produit à .
Étape 4.5.2.2.1.2
Élevez à la puissance .
Étape 4.5.2.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 4.5.2.2.1.4
Élevez à la puissance .
Étape 4.6
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 4.6.2
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.6.2.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1.1.1.2.1
Annulez le facteur commun.
Étape 4.6.2.1.1.1.2.2
Réécrivez l’expression.
Étape 4.6.2.1.1.2
Simplifiez
Étape 4.6.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.2.1.1
Appliquez la règle de produit à .
Étape 4.6.2.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.6.2.2.1.3
Élevez à la puissance .
Étape 4.7
Indiquez toutes les solutions.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :