Ensembles finis Exemples

Resolva para y 4x^2+4y^2=64
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Divisez par .
Étape 2.3.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Factorisez à partir de .
Étape 2.3.1.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.2.1
Factorisez à partir de .
Étape 2.3.1.2.2.2
Annulez le facteur commun.
Étape 2.3.1.2.2.3
Réécrivez l’expression.
Étape 2.3.1.2.2.4
Divisez par .
Étape 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.3
La solution complète est le résultat des parties positive et négative de la solution.