Entrer un problème...
Ensembles finis Exemples
Étape 1
Étape 1.1
Utilisez la propriété du produit des logarithmes, .
Étape 1.2
Multipliez par .
Étape 1.3
Multipliez par .
Étape 2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Élevez à la puissance .
Étape 3.2.3.2
Annulez le facteur commun à et .
Étape 3.2.3.2.1
Factorisez à partir de .
Étape 3.2.3.2.2
Annulez les facteurs communs.
Étape 3.2.3.2.2.1
Factorisez à partir de .
Étape 3.2.3.2.2.2
Annulez le facteur commun.
Étape 3.2.3.2.2.3
Réécrivez l’expression.
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Simplifiez .
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Multipliez par .
Étape 3.4.3
Associez et simplifiez le dénominateur.
Étape 3.4.3.1
Multipliez par .
Étape 3.4.3.2
Élevez à la puissance .
Étape 3.4.3.3
Élevez à la puissance .
Étape 3.4.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.3.5
Additionnez et .
Étape 3.4.3.6
Réécrivez comme .
Étape 3.4.3.6.1
Utilisez pour réécrire comme .
Étape 3.4.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.3.6.3
Associez et .
Étape 3.4.3.6.4
Annulez le facteur commun de .
Étape 3.4.3.6.4.1
Annulez le facteur commun.
Étape 3.4.3.6.4.2
Réécrivez l’expression.
Étape 3.4.3.6.5
Évaluez l’exposant.
Étape 3.4.4
Simplifiez le numérateur.
Étape 3.4.4.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 3.4.4.2
Multipliez par .
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :