Entrer un problème...
Ensembles finis Exemples
Étape 1
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 2
Soustrayez des deux côtés de l’équation.
Étape 3
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Placez le signe moins devant la fraction.
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Étape 5.2.1
Annulez le facteur commun de .
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 6
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 7
Consolidez les solutions.
Étape 8
Étape 8.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 8.2
Résolvez .
Étape 8.2.1
Ajoutez aux deux côtés de l’équation.
Étape 8.2.2
Divisez chaque terme dans par et simplifiez.
Étape 8.2.2.1
Divisez chaque terme dans par .
Étape 8.2.2.2
Simplifiez le côté gauche.
Étape 8.2.2.2.1
Annulez le facteur commun de .
Étape 8.2.2.2.1.1
Annulez le facteur commun.
Étape 8.2.2.2.1.2
Divisez par .
Étape 8.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 9
Utilisez chaque racine pour créer des intervalles de test.
Étape 10
Étape 10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 10.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.2.2
Remplacez par dans l’inégalité d’origine.
Étape 10.2.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 10.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.3.2
Remplacez par dans l’inégalité d’origine.
Étape 10.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 11
La solution se compose de tous les intervalles vrais.
ou
Étape 12
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 13