Ensembles finis Exemples

Trouver trois solutions de couples ordonnés 3x-2y=0
Étape 1
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2
Choisissez toute valeur pour qui est dans le domaine pour l’insérer dans l’équation.
Étape 3
Choisissez pour remplacer pour déterminer la paire ordonnée.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Supprimez les parenthèses.
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Factorisez à partir de .
Étape 3.2.1.2.2
Annulez le facteur commun.
Étape 3.2.1.2.3
Réécrivez l’expression.
Étape 3.2.1.2.4
Divisez par .
Étape 3.2.2
Multipliez par .
Étape 3.3
Utilisez les valeurs et pour former la paire ordonnée.
Étape 4
Choisissez pour remplacer pour déterminer la paire ordonnée.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Supprimez les parenthèses.
Étape 4.2
Multipliez par .
Étape 4.3
Utilisez les valeurs et pour former la paire ordonnée.
Étape 5
Choisissez pour remplacer pour déterminer la paire ordonnée.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Supprimez les parenthèses.
Étape 5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun.
Étape 5.2.2
Divisez par .
Étape 5.3
Utilisez les valeurs et pour former la paire ordonnée.
Étape 6
Ce sont trois solutions possibles à l’équation.
Étape 7