Entrer un problème...
Ensembles finis Exemples
Étape 1
Une fonction rationnelle est toute fonction qui peut être écrite comme le rapport de deux fonctions polynomiales où le dénominateur n’est pas .
est une fonction rationnelle
Étape 2
peut être écrit comme .
Étape 3
Une fonction rationnelle est convenable lorsque le degré du numérateur est inférieur au degré du dénominateur, autrement elle n’est pas convenable.
Le degré du numérateur est inférieur au degré du dénominateur implique une fonction correcte
Le degré du numérateur est supérieur au degré du dénominateur implique une fonction irrégulière
Le degré du numérateur est égal au degré du dénominateur implique une fonction irrégulière
Étape 4
Étape 4.1
Simplifiez et remettez le polynôme dans l’ordre.
Étape 4.1.1
Réécrivez comme .
Étape 4.1.2
Développez à l’aide de la méthode FOIL.
Étape 4.1.2.1
Appliquez la propriété distributive.
Étape 4.1.2.2
Appliquez la propriété distributive.
Étape 4.1.2.3
Appliquez la propriété distributive.
Étape 4.1.3
Simplifiez et associez les termes similaires.
Étape 4.1.3.1
Simplifiez chaque terme.
Étape 4.1.3.1.1
Multipliez par .
Étape 4.1.3.1.2
Déplacez à gauche de .
Étape 4.1.3.1.3
Réécrivez comme .
Étape 4.1.3.1.4
Réécrivez comme .
Étape 4.1.3.1.5
Multipliez par .
Étape 4.1.3.2
Soustrayez de .
Étape 4.2
Le plus grand exposant est le degré d’un polynôme.
Étape 5
L’expression est constante, ce qui signifie qu’elle peut être réécrite avec un facteur de . Le degré est le plus grand exposant sur la variable.
Étape 6
Le degré du numérateur est supérieur au degré du dénominateur .
Étape 7
Le degré du numérateur est supérieur au degré du dénominateur, ce qui signifie que est une fonction irrégulière.
Irrégulière