Ensembles finis Exemples

Prouver qu'une racine est dans l'intervalle f(x)=x , [-4,4]
,
Étape 1
Le théorème de la valeur intermédiaire indique que, si est une fonction continue à valeur réelle sur l’intervalle et si est un nombre compris entre et , alors il y a un contenu dans l’intervalle de sorte que .
Étape 2
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Supprimez les parenthèses.
Étape 4
Supprimez les parenthèses.
Étape 5
Réécrivez l’équation comme .
Étape 6
Le théorème de la valeur intermédiaire indique qu’il y a une racine sur l’intervalle car est une fonction continue sur .
Les racines sur l’intervalle se situent sur .
Étape 7