Ensembles finis Exemples

Prouver qu'une racine est dans l'intervalle y=64-x^2 , [-8,8]
,
Étape 1
Remettez dans l’ordre et .
Étape 2
Le théorème de la valeur intermédiaire indique que, si est une fonction continue à valeur réelle sur l’intervalle et si est un nombre compris entre et , alors il y a un contenu dans l’intervalle de sorte que .
Étape 3
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
Calculez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez par .
Étape 4.2
Additionnez et .
Étape 5
Calculez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez par .
Étape 5.2
Additionnez et .
Étape 6
Comme est sur l’intervalle , résolvez l’équation pour à la racine en définissant sur dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Soustrayez des deux côtés de l’équation.
Étape 6.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Divisez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.3.2.2
Divisez par .
Étape 6.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.1
Divisez par .
Étape 6.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Réécrivez comme .
Étape 6.5.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
Le théorème de la valeur intermédiaire indique qu’il y a une racine sur l’intervalle car est une fonction continue sur .
Les racines sur l’intervalle se situent sur .
Étape 8