Ensembles finis Exemples

Résoudre en utilisant une matrice avec la règle de Cramer y=3x-2 , y=-x+2
,
Étape 1
Move all of the variables to the left side of each equation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Remettez dans l’ordre et .
Étape 1.3
Ajoutez aux deux côtés de l’équation.
Étape 1.4
Remettez dans l’ordre et .
Étape 2
Représentez le système d’équations dans le format de matrice.
Étape 3
Find the determinant of the coefficient matrix .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Write in determinant notation.
Étape 3.2
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 3.3
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Multipliez par .
Étape 3.3.1.2
Multipliez par .
Étape 3.3.2
Soustrayez de .
Étape 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Étape 5
Find the value of by Cramer's Rule, which states that .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Étape 5.2
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Multipliez par .
Étape 5.2.2.1.2
Multipliez par .
Étape 5.2.2.2
Soustrayez de .
Étape 5.3
Use the formula to solve for .
Étape 5.4
Substitute for and for in the formula.
Étape 5.5
Divisez par .
Étape 6
Find the value of by Cramer's Rule, which states that .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Étape 6.2
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 6.2.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1.1
Multipliez par .
Étape 6.2.2.1.2
Multipliez par .
Étape 6.2.2.2
Additionnez et .
Étape 6.3
Use the formula to solve for .
Étape 6.4
Substitute for and for in the formula.
Étape 6.5
Divisez par .
Étape 7
Indiquez la solution au système d’équations.