Entrer un problème...
Ensembles finis Exemples
Étape 1
Multipliez par chaque élément de la matrice.
Étape 2
Étape 2.1
Déplacez à gauche de .
Étape 2.2
Multipliez par .
Étape 2.3
Multipliez par .
Étape 2.4
Déplacez à gauche de .
Étape 3
The inverse of a matrix can be found using the formula where is the determinant.
Étape 4
Étape 4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 4.2
Simplifiez le déterminant.
Étape 4.2.1
Simplifiez chaque terme.
Étape 4.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.2.1.2
Multipliez par en additionnant les exposants.
Étape 4.2.1.2.1
Déplacez .
Étape 4.2.1.2.2
Multipliez par .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
Multipliez par en additionnant les exposants.
Étape 4.2.1.4.1
Déplacez .
Étape 4.2.1.4.2
Multipliez par .
Étape 4.2.2
Soustrayez de .
Étape 5
Since the determinant is non-zero, the inverse exists.
Étape 6
Substitute the known values into the formula for the inverse.
Étape 7
Multipliez par chaque élément de la matrice.
Étape 8
Étape 8.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 8.2
Associez et .
Étape 8.3
Annulez le facteur commun de .
Étape 8.3.1
Factorisez à partir de .
Étape 8.3.2
Annulez le facteur commun.
Étape 8.3.3
Réécrivez l’expression.
Étape 8.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 8.5
Annulez le facteur commun de .
Étape 8.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 8.5.2
Factorisez à partir de .
Étape 8.5.3
Annulez le facteur commun.
Étape 8.5.4
Réécrivez l’expression.
Étape 8.6
Placez le signe moins devant la fraction.
Étape 8.7
Réécrivez en utilisant la commutativité de la multiplication.
Étape 8.8
Annulez le facteur commun de .
Étape 8.8.1
Placez le signe négatif initial dans dans le numérateur.
Étape 8.8.2
Factorisez à partir de .
Étape 8.8.3
Annulez le facteur commun.
Étape 8.8.4
Réécrivez l’expression.
Étape 8.9
Placez le signe moins devant la fraction.
Étape 8.10
Réécrivez en utilisant la commutativité de la multiplication.
Étape 8.11
Associez et .
Étape 8.12
Annulez le facteur commun de .
Étape 8.12.1
Factorisez à partir de .
Étape 8.12.2
Annulez le facteur commun.
Étape 8.12.3
Réécrivez l’expression.