Entrer un problème...
Ensembles finis Exemples
Étape 1
Définissez la formule pour déterminer l’équation caractéristique .
Étape 2
La matrice d’identité ou matrice d’unité de taille est la matrice carrée avec les uns sur la diagonale principale et les zéros ailleurs.
Étape 3
Étape 3.1
Remplacez par .
Étape 3.2
Remplacez par .
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Multipliez par chaque élément de la matrice.
Étape 4.1.2
Simplifiez chaque élément dans la matrice.
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez .
Étape 4.1.2.2.1
Multipliez par .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez .
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Multipliez par .
Étape 4.2
Additionnez les éléments correspondants.
Étape 4.3
Simplify each element.
Étape 4.3.1
Additionnez et .
Étape 4.3.2
Additionnez et .
Étape 5
Étape 5.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2
Simplifiez le déterminant.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Développez à l’aide de la méthode FOIL.
Étape 5.2.1.1.1
Appliquez la propriété distributive.
Étape 5.2.1.1.2
Appliquez la propriété distributive.
Étape 5.2.1.1.3
Appliquez la propriété distributive.
Étape 5.2.1.2
Simplifiez et associez les termes similaires.
Étape 5.2.1.2.1
Simplifiez chaque terme.
Étape 5.2.1.2.1.1
Multipliez par .
Étape 5.2.1.2.1.2
Multipliez par .
Étape 5.2.1.2.1.3
Multipliez par .
Étape 5.2.1.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.1.2.1.5
Multipliez par en additionnant les exposants.
Étape 5.2.1.2.1.5.1
Déplacez .
Étape 5.2.1.2.1.5.2
Multipliez par .
Étape 5.2.1.2.1.6
Multipliez par .
Étape 5.2.1.2.1.7
Multipliez par .
Étape 5.2.1.2.2
Soustrayez de .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
Remettez dans l’ordre et .
Étape 6
Définissez le polynôme caractéristique égal à pour déterminer les valeurs propres .
Étape 7
Étape 7.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 7.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 7.3
Simplifiez
Étape 7.3.1
Simplifiez le numérateur.
Étape 7.3.1.1
Élevez à la puissance .
Étape 7.3.1.2
Multipliez .
Étape 7.3.1.2.1
Multipliez par .
Étape 7.3.1.2.2
Multipliez par .
Étape 7.3.1.3
Additionnez et .
Étape 7.3.1.4
Réécrivez comme .
Étape 7.3.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.3.2
Multipliez par .
Étape 7.4
La réponse finale est la combinaison des deux solutions.