Ensembles finis Exemples

Trouver les valeurs propres [[9,1,0],[3/2,0,-2],[1,2,4]]
Étape 1
Définissez la formule pour déterminer l’équation caractéristique .
Étape 2
La matrice d’identité ou matrice d’unité de taille est la matrice carrée avec les uns sur la diagonale principale et les zéros ailleurs.
Étape 3
Remplacez les valeurs connues dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par .
Étape 3.2
Remplacez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par chaque élément de la matrice.
Étape 4.1.2
Simplifiez chaque élément dans la matrice.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Multipliez par .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.4.1
Multipliez par .
Étape 4.1.2.4.2
Multipliez par .
Étape 4.1.2.5
Multipliez par .
Étape 4.1.2.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.6.1
Multipliez par .
Étape 4.1.2.6.2
Multipliez par .
Étape 4.1.2.7
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.7.1
Multipliez par .
Étape 4.1.2.7.2
Multipliez par .
Étape 4.1.2.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.8.1
Multipliez par .
Étape 4.1.2.8.2
Multipliez par .
Étape 4.1.2.9
Multipliez par .
Étape 4.2
Additionnez les éléments correspondants.
Étape 4.3
Simplify each element.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Additionnez et .
Étape 4.3.2
Additionnez et .
Étape 4.3.3
Additionnez et .
Étape 4.3.4
Soustrayez de .
Étape 4.3.5
Additionnez et .
Étape 4.3.6
Additionnez et .
Étape 4.3.7
Additionnez et .
Étape 5
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Consider the corresponding sign chart.
Étape 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 5.1.3
The minor for is the determinant with row and column deleted.
Étape 5.1.4
Multiply element by its cofactor.
Étape 5.1.5
The minor for is the determinant with row and column deleted.
Étape 5.1.6
Multiply element by its cofactor.
Étape 5.1.7
The minor for is the determinant with row and column deleted.
Étape 5.1.8
Multiply element by its cofactor.
Étape 5.1.9
Add the terms together.
Étape 5.2
Multipliez par .
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.3.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Appliquez la propriété distributive.
Étape 5.3.2.1.2
Multipliez par .
Étape 5.3.2.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.3.2.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.4.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.4.1.1
Déplacez .
Étape 5.3.2.1.4.1.2
Multipliez par .
Étape 5.3.2.1.4.2
Multipliez par .
Étape 5.3.2.1.4.3
Multipliez par .
Étape 5.3.2.1.5
Multipliez par .
Étape 5.3.2.2
Remettez dans l’ordre et .
Étape 5.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.4.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.1
Appliquez la propriété distributive.
Étape 5.4.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1.2.1
Factorisez à partir de .
Étape 5.4.2.1.2.2
Annulez le facteur commun.
Étape 5.4.2.1.2.3
Réécrivez l’expression.
Étape 5.4.2.1.3
Multipliez par .
Étape 5.4.2.1.4
Associez et .
Étape 5.4.2.1.5
Multipliez par .
Étape 5.4.2.2
Additionnez et .
Étape 5.5
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Additionnez et .
Étape 5.5.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 5.5.2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.2.1
Multipliez par .
Étape 5.5.2.2.2
Multipliez par .
Étape 5.5.2.2.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.2.3.1
Déplacez .
Étape 5.5.2.2.3.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.2.3.2.1
Élevez à la puissance .
Étape 5.5.2.2.3.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.5.2.2.3.3
Additionnez et .
Étape 5.5.2.2.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.5.2.2.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.2.5.1
Déplacez .
Étape 5.5.2.2.5.2
Multipliez par .
Étape 5.5.2.2.6
Multipliez par .
Étape 5.5.2.2.7
Multipliez par .
Étape 5.5.2.3
Additionnez et .
Étape 5.5.2.4
Soustrayez de .
Étape 5.5.2.5
Appliquez la propriété distributive.
Étape 5.5.2.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.6.1
Multipliez par .
Étape 5.5.2.6.2
Multipliez par .
Étape 5.5.2.7
Multipliez par .
Étape 5.5.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.5.4
Associez et .
Étape 5.5.5
Associez les numérateurs sur le dénominateur commun.
Étape 5.5.6
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.6.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.6.1.1.1
Factorisez à partir de .
Étape 5.5.6.1.1.2
Factorisez à partir de .
Étape 5.5.6.1.1.3
Factorisez à partir de .
Étape 5.5.6.1.2
Multipliez par .
Étape 5.5.6.1.3
Additionnez et .
Étape 5.5.6.2
Déplacez à gauche de .
Étape 5.5.6.3
Placez le signe moins devant la fraction.
Étape 5.5.7
Soustrayez de .
Étape 5.5.8
Remettez dans l’ordre et .
Étape 6
Définissez le polynôme caractéristique égal à pour déterminer les valeurs propres .
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.