Entrer un problème...
Ensembles finis Exemples
xP(x)149.5-169.54169.5-189.511189.5-209.515209.5-229.525xP(x)149.5−169.54169.5−189.511189.5−209.515209.5−229.525
Étape 1
Étape 1.1
Une variable aléatoire discrète xx prend un ensemble de valeurs séparées (tel que 00, 11, 22...). Sa distribution de probabilité affecte une probabilité P(x)P(x) à chaque valeur possible xx. Pour chaque xx, la probabilité P(x)P(x) diminue entre 00 et 11 inclus et la somme des probabilités pour toutes les valeurs xx possibles est égale à 11.
1. Pour chaque xx, 0≤P(x)≤10≤P(x)≤1.
2. P(x0)+P(x1)+P(x2)+…+P(xn)=1P(x0)+P(x1)+P(x2)+…+P(xn)=1.
Étape 1.2
44 n’est pas inférieur ou égal à 11, ce qui ne respecte pas la première propriété de la distribution de probabilité.
44 n’est pas inférieur ou égal à 11
Étape 1.3
1111 n’est pas inférieur ou égal à 11, ce qui ne respecte pas la première propriété de la distribution de probabilité.
1111 n’est pas inférieur ou égal à 11
Étape 1.4
1515 n’est pas inférieur ou égal à 11, ce qui ne respecte pas la première propriété de la distribution de probabilité.
1515 n’est pas inférieur ou égal à 11
Étape 1.5
2525 n’est pas inférieur ou égal à 11, ce qui ne respecte pas la première propriété de la distribution de probabilité.
2525 n’est pas inférieur ou égal à 11
Étape 1.6
La probabilité P(x)P(x) ne tombe pas entre 00 et 11 inclus pour toutes les valeurs xx, ce qui ne respecte pas la première propriété de la distribution de probabilités.
La table ne respecte pas les deux propriétés d’une distribution de probabilité
La table ne respecte pas les deux propriétés d’une distribution de probabilité
Étape 2
La table ne respecte pas les deux propriétés d’une distribution de probabilité, ce qui signifie que l’écart-type ne peut pas être trouvé avec la table donnée.
Écart-type introuvable