Entrer un problème...
Ensembles finis Exemples
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.3
Simplifiez .
Étape 1.3.1
Réécrivez comme .
Étape 1.3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.4.2
Ajoutez aux deux côtés de l’équation.
Étape 1.4.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.4.4
Ajoutez aux deux côtés de l’équation.
Étape 1.4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2
Une équation linéaire est une équation d’une droite, ce qui signifie que le degré d’une équation linéaire doit être ou pour chacune de ses variables. Dans ce cas, le degré de la variable dans l’équation viole la définition de l’équation linéaire, ce qui signifie que l’équation n’est pas une équation linéaire.
Pas linéaire