Entrer un problème...
Ensembles finis Exemples
Étape 1
Simplifiez en déplaçant dans le logarithme.
Étape 2
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 3
Étape 3.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.2
Résolvez .
Étape 3.2.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Étape 3.2.2
Simplifiez l’équation.
Étape 3.2.2.1
Simplifiez le côté gauche.
Étape 3.2.2.1.1
Extrayez les termes de sous le radical.
Étape 3.2.2.2
Simplifiez le côté droit.
Étape 3.2.2.2.1
Simplifiez .
Étape 3.2.2.2.1.1
Réécrivez comme .
Étape 3.2.2.2.1.2
Extrayez les termes de sous le radical.
Étape 3.2.2.2.1.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.3
Écrivez comme fonction définie par morceaux.
Étape 3.2.3.1
Pour déterminer l’intervalle pour la première partie, déterminez où l’intérieur de la valeur absolue est non négatif.
Étape 3.2.3.2
Dans la partie où est non négatif, retirez la valeur absolue.
Étape 3.2.3.3
Pour déterminer l’intervalle pour la deuxième partie, déterminez où l’intérieur de la valeur absolue est négatif.
Étape 3.2.3.4
Dans la partie où est négatif, retirez la valeur absolue et multipliez par .
Étape 3.2.3.5
Écrivez comme fonction définie par morceaux.
Étape 3.2.4
Déterminez l’intersection de et .
Étape 3.2.5
Divisez chaque terme dans par et simplifiez.
Étape 3.2.5.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 3.2.5.2
Simplifiez le côté gauche.
Étape 3.2.5.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.2.5.2.2
Divisez par .
Étape 3.2.5.3
Simplifiez le côté droit.
Étape 3.2.5.3.1
Divisez par .
Étape 3.2.6
Déterminez l’union des solutions.
ou
ou
Étape 3.3
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.4
Soustrayez des deux côtés de l’inégalité.
Étape 3.5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 4
La solution se compose de tous les intervalles vrais.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 6