Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Étape 1.1.1
Factorisez la fraction.
Étape 1.1.1.1
Réécrivez comme .
Étape 1.1.1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.3
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.4
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.5
Annulez le facteur commun de .
Étape 1.1.5.1
Annulez le facteur commun.
Étape 1.1.5.2
Réécrivez l’expression.
Étape 1.1.6
Annulez le facteur commun de .
Étape 1.1.6.1
Annulez le facteur commun.
Étape 1.1.6.2
Réécrivez l’expression.
Étape 1.1.7
Simplifiez chaque terme.
Étape 1.1.7.1
Annulez le facteur commun de .
Étape 1.1.7.1.1
Annulez le facteur commun.
Étape 1.1.7.1.2
Divisez par .
Étape 1.1.7.2
Appliquez la propriété distributive.
Étape 1.1.7.3
Multipliez par .
Étape 1.1.7.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.7.5
Annulez le facteur commun de .
Étape 1.1.7.5.1
Annulez le facteur commun.
Étape 1.1.7.5.2
Divisez par .
Étape 1.1.7.6
Appliquez la propriété distributive.
Étape 1.1.7.7
Multipliez par .
Étape 1.1.8
Simplifiez l’expression.
Étape 1.1.8.1
Déplacez .
Étape 1.1.8.2
Remettez dans l’ordre et .
Étape 1.1.8.3
Déplacez .
Étape 1.1.8.4
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Étape 1.3.1
Résolvez dans .
Étape 1.3.1.1
Réécrivez l’équation comme .
Étape 1.3.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Étape 1.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.2.2
Simplifiez le côté droit.
Étape 1.3.2.2.1
Simplifiez .
Étape 1.3.2.2.1.1
Simplifiez chaque terme.
Étape 1.3.2.2.1.1.1
Appliquez la propriété distributive.
Étape 1.3.2.2.1.1.2
Multipliez par .
Étape 1.3.2.2.1.1.3
Multipliez .
Étape 1.3.2.2.1.1.3.1
Multipliez par .
Étape 1.3.2.2.1.1.3.2
Multipliez par .
Étape 1.3.2.2.1.2
Additionnez et .
Étape 1.3.3
Résolvez dans .
Étape 1.3.3.1
Réécrivez l’équation comme .
Étape 1.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 1.3.3.3
Divisez chaque terme dans par et simplifiez.
Étape 1.3.3.3.1
Divisez chaque terme dans par .
Étape 1.3.3.3.2
Simplifiez le côté gauche.
Étape 1.3.3.3.2.1
Annulez le facteur commun de .
Étape 1.3.3.3.2.1.1
Annulez le facteur commun.
Étape 1.3.3.3.2.1.2
Divisez par .
Étape 1.3.4
Remplacez toutes les occurrences de par dans chaque équation.
Étape 1.3.4.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.4.2
Simplifiez le côté droit.
Étape 1.3.4.2.1
Simplifiez .
Étape 1.3.4.2.1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 1.3.4.2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.4.2.1.3
Soustrayez de .
Étape 1.3.5
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 1.5
Simplifiez
Étape 1.5.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.4
Multipliez par .
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.5
Additionnez et .
Étape 4.2
Remplacez la limite inférieure pour dans .
Étape 4.3
Additionnez et .
Étape 4.4
Remplacez la limite supérieure pour dans .
Étape 4.5
Additionnez et .
Étape 4.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 4.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 5
L’intégrale de par rapport à est .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Laissez . Déterminez .
Étape 7.1.1
Réécrivez.
Étape 7.1.2
Divisez par .
Étape 7.2
Remplacez la limite inférieure pour dans .
Étape 7.3
Soustrayez de .
Étape 7.4
Remplacez la limite supérieure pour dans .
Étape 7.5
Simplifiez
Étape 7.5.1
Multipliez par .
Étape 7.5.2
Soustrayez de .
Étape 7.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 7.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 8
Placez le signe moins devant la fraction.
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
L’intégrale de par rapport à est .
Étape 11
Associez et .
Étape 12
Étape 12.1
Évaluez sur et sur .
Étape 12.2
Évaluez sur et sur .
Étape 12.3
Simplifiez
Étape 12.3.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 12.3.2
Associez et .
Étape 12.3.3
Associez les numérateurs sur le dénominateur commun.
Étape 12.3.4
Associez et .
Étape 12.3.5
Annulez le facteur commun de .
Étape 12.3.5.1
Annulez le facteur commun.
Étape 12.3.5.2
Réécrivez l’expression.
Étape 12.3.6
Multipliez par .
Étape 13
Étape 13.1
Utilisez la propriété du quotient des logarithmes, .
Étape 13.2
Utilisez la propriété du quotient des logarithmes, .
Étape 13.3
Utilisez la propriété du quotient des logarithmes, .
Étape 13.4
Réécrivez comme un produit.
Étape 13.5
Multipliez par la réciproque de la fraction pour diviser par .
Étape 13.6
Multipliez par .
Étape 13.7
Multipliez par .
Étape 13.8
Pour multiplier des valeurs absolues, multipliez les termes à l’intérieur de chaque valeur absolue.
Étape 13.9
Multipliez par .
Étape 13.10
Pour multiplier des valeurs absolues, multipliez les termes à l’intérieur de chaque valeur absolue.
Étape 13.11
Multipliez par .
Étape 14
Étape 14.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 14.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 14.3
Divisez par .
Étape 15
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 16