Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Appliquez la règle de la constante.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4
Multipliez par .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Associez et .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Simplifiez
Étape 7.1.1
Multipliez par .
Étape 7.1.2
Multipliez par .
Étape 7.2
Utilisez pour réécrire comme .
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Étape 9.1
Simplifiez
Étape 9.2
Simplifiez
Étape 9.2.1
Multipliez par .
Étape 9.2.2
Multipliez par .
Étape 9.2.3
Multipliez par .
Étape 9.2.4
Annulez le facteur commun à et .
Étape 9.2.4.1
Factorisez à partir de .
Étape 9.2.4.2
Annulez les facteurs communs.
Étape 9.2.4.2.1
Factorisez à partir de .
Étape 9.2.4.2.2
Annulez le facteur commun.
Étape 9.2.4.2.3
Réécrivez l’expression.
Étape 10
Remplacez toutes les occurrences de par .