Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 1 à 6 de 9/x-e^(-x) par rapport à x
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
L’intégrale de par rapport à est .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Multipliez par .
Étape 5.2
Remplacez la limite inférieure pour dans .
Étape 5.3
Multipliez par .
Étape 5.4
Remplacez la limite supérieure pour dans .
Étape 5.5
Multipliez par .
Étape 5.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 5.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
L’intégrale de par rapport à est .
Étape 9
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez sur et sur .
Étape 9.2
Évaluez sur et sur .
Étape 9.3
Supprimez les parenthèses inutiles.
Étape 10
Utilisez la propriété du quotient des logarithmes, .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.3
Divisez par .
Étape 11.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 13