Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
La dérivée de par rapport à est .
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Réécrivez comme .
Étape 2.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.6
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.2
La dérivée de par rapport à est .
Étape 2.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Réécrivez comme .
Étape 2.3.5
Multipliez par .
Étape 2.4
Simplifiez
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Remettez les termes dans l’ordre.
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Réécrivez comme .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Étape 5.1
Utilisez l’identité d’angle double pour transformer en .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Soustrayez des deux côtés de l’équation.
Étape 5.4
Simplifiez le côté gauche.
Étape 5.4.1
Simplifiez .
Étape 5.4.1.1
Simplifiez chaque terme.
Étape 5.4.1.1.1
Appliquez la propriété distributive.
Étape 5.4.1.1.2
Multipliez par .
Étape 5.4.1.1.3
Multipliez par .
Étape 5.4.1.1.4
Appliquez la propriété distributive.
Étape 5.4.1.2
Remettez les facteurs dans l’ordre dans .
Étape 5.5
Résolvez l’équation pour .
Étape 5.5.1
Factorisez à partir de .
Étape 5.5.1.1
Factorisez à partir de .
Étape 5.5.1.2
Factorisez à partir de .
Étape 5.5.1.3
Factorisez à partir de .
Étape 5.5.1.4
Factorisez à partir de .
Étape 5.5.1.5
Factorisez à partir de .
Étape 5.5.1.6
Factorisez à partir de .
Étape 5.5.1.7
Factorisez à partir de .
Étape 5.5.2
Divisez chaque terme dans par et simplifiez.
Étape 5.5.2.1
Divisez chaque terme dans par .
Étape 5.5.2.2
Simplifiez le côté gauche.
Étape 5.5.2.2.1
Annulez le facteur commun de .
Étape 5.5.2.2.1.1
Annulez le facteur commun.
Étape 5.5.2.2.1.2
Divisez par .
Étape 5.5.2.3
Simplifiez le côté droit.
Étape 5.5.2.3.1
Placez le signe moins devant la fraction.
Étape 5.5.2.3.2
Factorisez à partir de .
Étape 5.5.2.3.3
Réécrivez comme .
Étape 5.5.2.3.4
Factorisez à partir de .
Étape 5.5.2.3.5
Factorisez à partir de .
Étape 5.5.2.3.6
Factorisez à partir de .
Étape 5.5.2.3.7
Factorisez à partir de .
Étape 5.5.2.3.8
Factorisez à partir de .
Étape 5.5.2.3.9
Simplifiez l’expression.
Étape 5.5.2.3.9.1
Réécrivez comme .
Étape 5.5.2.3.9.2
Placez le signe moins devant la fraction.
Étape 5.5.2.3.9.3
Multipliez par .
Étape 5.5.2.3.9.4
Multipliez par .
Étape 6
Remplacez par.