Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étudiez la définition de la limite de la dérivée.
Étape 2
Étape 2.1
Évaluez la fonction sur .
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Étape 2.1.2.1
Utilisez le théorème du binôme.
Étape 2.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.3
Simplifiez
Étape 2.1.2.3.1
Multipliez par .
Étape 2.1.2.3.2
Multipliez par .
Étape 2.1.2.4
Supprimez les parenthèses.
Étape 2.1.2.5
La réponse finale est .
Étape 2.2
Remettez dans l’ordre.
Étape 2.2.1
Déplacez .
Étape 2.2.2
Déplacez .
Étape 2.2.3
Déplacez .
Étape 2.2.4
Déplacez .
Étape 2.2.5
Remettez dans l’ordre et .
Étape 2.3
Déterminez les composants de la définition.
Étape 3
Insérez les composants.
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Soustrayez de .
Étape 4.1.3
Additionnez et .
Étape 4.1.4
Factorisez à partir de .
Étape 4.1.4.1
Factorisez à partir de .
Étape 4.1.4.2
Factorisez à partir de .
Étape 4.1.4.3
Factorisez à partir de .
Étape 4.1.4.4
Factorisez à partir de .
Étape 4.1.4.5
Factorisez à partir de .
Étape 4.2
Simplifiez les termes.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.3
Simplifiez
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Multipliez par .
Étape 4.4
Déplacez .
Étape 4.5
Déplacez .
Étape 4.6
Remettez dans l’ordre et .
Étape 5
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 6
Évaluez la limite de qui est constante lorsque approche de .
Étape 7
Placez le terme hors de la limite car il constant par rapport à .
Étape 8
Placez le terme hors de la limite car il constant par rapport à .
Étape 9
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 10
Étape 10.1
Évaluez la limite de en insérant pour .
Étape 10.2
Évaluez la limite de en insérant pour .
Étape 11
Étape 11.1
Simplifiez chaque terme.
Étape 11.1.1
Multipliez .
Étape 11.1.1.1
Multipliez par .
Étape 11.1.1.2
Multipliez par .
Étape 11.1.2
L’élévation de à toute puissance positive produit .
Étape 11.1.3
Multipliez par .
Étape 11.2
Associez les termes opposés dans .
Étape 11.2.1
Additionnez et .
Étape 11.2.2
Additionnez et .
Étape 12