Calcul infinitésimal Exemples

Trouver les points d'inflexion y=x^5 logarithme népérien de x
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Associez et .
Étape 2.1.3.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1
Factorisez à partir de .
Étape 2.1.3.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.2.1
Élevez à la puissance .
Étape 2.1.3.2.2.2
Factorisez à partir de .
Étape 2.1.3.2.2.3
Annulez le facteur commun.
Étape 2.1.3.2.2.4
Réécrivez l’expression.
Étape 2.1.3.2.2.5
Divisez par .
Étape 2.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.3.4
Remettez les termes dans l’ordre.
Étape 2.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2.2.3
La dérivée de par rapport à est .
Étape 2.2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.5
Associez et .
Étape 2.2.2.6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.6.1
Factorisez à partir de .
Étape 2.2.2.6.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.6.2.1
Élevez à la puissance .
Étape 2.2.2.6.2.2
Factorisez à partir de .
Étape 2.2.2.6.2.3
Annulez le facteur commun.
Étape 2.2.2.6.2.4
Réécrivez l’expression.
Étape 2.2.2.6.2.5
Divisez par .
Étape 2.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Appliquez la propriété distributive.
Étape 2.2.3.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
Multipliez par .
Étape 2.2.3.2.2
Additionnez et .
Étape 2.2.3.3
Remettez les termes dans l’ordre.
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Réécrivez l’expression.
Étape 3.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Annulez le facteur commun.
Étape 3.3.2.2.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.1
Annulez le facteur commun.
Étape 3.3.3.1.2
Réécrivez l’expression.
Étape 3.3.3.2
Placez le signe moins devant la fraction.
Étape 3.4
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.5
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Réécrivez l’équation comme .
Étape 3.6.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4
Déterminez les points où se trouve la dérivée seconde .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Appliquez la règle de produit à .
Étape 4.1.2.2
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.1.2.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.2.1
Factorisez à partir de .
Étape 4.1.2.3.2.2
Annulez le facteur commun.
Étape 4.1.2.3.2.3
Réécrivez l’expression.
Étape 4.1.2.4
Placez sur le numérateur en utilisant la règle de l’exposant négatif .
Étape 4.1.2.5
Développez en déplaçant hors du logarithme.
Étape 4.1.2.6
Le logarithme naturel de est .
Étape 4.1.2.7
Multipliez par .
Étape 4.1.2.8
Multipliez par .
Étape 4.1.2.9
Déplacez à gauche de .
Étape 4.1.2.10
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Élevez à la puissance .
Étape 6.2.1.4
Multipliez par .
Étape 6.2.1.5
Simplifiez en déplaçant dans le logarithme.
Étape 6.2.1.6
Élevez à la puissance .
Étape 6.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Élevez à la puissance .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.1.5
Simplifiez en déplaçant dans le logarithme.
Étape 7.2.1.6
Élevez à la puissance .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, le point d’inflexion est .
Étape 9