Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée seconde.
Étape 2.1.1
Déterminez la dérivée première.
Étape 2.1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.1.1.2
Différenciez.
Étape 2.1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.1.2.2
Multipliez par .
Étape 2.1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.1.2.5
Additionnez et .
Étape 2.1.1.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.1.2.7
Multipliez.
Étape 2.1.1.2.7.1
Multipliez par .
Étape 2.1.1.2.7.2
Multipliez par .
Étape 2.1.1.2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.1.3
Élevez à la puissance .
Étape 2.1.1.4
Élevez à la puissance .
Étape 2.1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.1.6
Additionnez et .
Étape 2.1.1.7
Additionnez et .
Étape 2.1.1.8
Remettez les termes dans l’ordre.
Étape 2.1.2
Déterminez la dérivée seconde.
Étape 2.1.2.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.1.2.2
Différenciez.
Étape 2.1.2.2.1
Multipliez les exposants dans .
Étape 2.1.2.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2.2.1.2
Multipliez par .
Étape 2.1.2.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2.5
Simplifiez l’expression.
Étape 2.1.2.2.5.1
Additionnez et .
Étape 2.1.2.2.5.2
Déplacez à gauche de .
Étape 2.1.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.1.2.4
Différenciez.
Étape 2.1.2.4.1
Multipliez par .
Étape 2.1.2.4.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.4.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.4.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.4.5
Multipliez par .
Étape 2.1.2.4.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.4.7
Simplifiez l’expression.
Étape 2.1.2.4.7.1
Additionnez et .
Étape 2.1.2.4.7.2
Multipliez par .
Étape 2.1.2.5
Simplifiez
Étape 2.1.2.5.1
Appliquez la propriété distributive.
Étape 2.1.2.5.2
Appliquez la propriété distributive.
Étape 2.1.2.5.3
Simplifiez le numérateur.
Étape 2.1.2.5.3.1
Simplifiez chaque terme.
Étape 2.1.2.5.3.1.1
Réécrivez comme .
Étape 2.1.2.5.3.1.2
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.5.3.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.2.3
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.3
Simplifiez et associez les termes similaires.
Étape 2.1.2.5.3.1.3.1
Simplifiez chaque terme.
Étape 2.1.2.5.3.1.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.2.5.3.1.3.1.2
Multipliez par en additionnant les exposants.
Étape 2.1.2.5.3.1.3.1.2.1
Déplacez .
Étape 2.1.2.5.3.1.3.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.5.3.1.3.1.2.3
Additionnez et .
Étape 2.1.2.5.3.1.3.1.3
Multipliez par .
Étape 2.1.2.5.3.1.3.1.4
Multipliez par .
Étape 2.1.2.5.3.1.3.1.5
Multipliez par .
Étape 2.1.2.5.3.1.3.1.6
Multipliez par .
Étape 2.1.2.5.3.1.3.1.7
Multipliez par .
Étape 2.1.2.5.3.1.3.2
Soustrayez de .
Étape 2.1.2.5.3.1.4
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.5
Simplifiez
Étape 2.1.2.5.3.1.5.1
Multipliez par .
Étape 2.1.2.5.3.1.5.2
Multipliez par .
Étape 2.1.2.5.3.1.6
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.7
Simplifiez
Étape 2.1.2.5.3.1.7.1
Multipliez par en additionnant les exposants.
Étape 2.1.2.5.3.1.7.1.1
Déplacez .
Étape 2.1.2.5.3.1.7.1.2
Multipliez par .
Étape 2.1.2.5.3.1.7.1.2.1
Élevez à la puissance .
Étape 2.1.2.5.3.1.7.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.5.3.1.7.1.3
Additionnez et .
Étape 2.1.2.5.3.1.7.2
Multipliez par en additionnant les exposants.
Étape 2.1.2.5.3.1.7.2.1
Déplacez .
Étape 2.1.2.5.3.1.7.2.2
Multipliez par .
Étape 2.1.2.5.3.1.7.2.2.1
Élevez à la puissance .
Étape 2.1.2.5.3.1.7.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.5.3.1.7.2.3
Additionnez et .
Étape 2.1.2.5.3.1.8
Multipliez par .
Étape 2.1.2.5.3.1.9
Simplifiez chaque terme.
Étape 2.1.2.5.3.1.9.1
Multipliez par en additionnant les exposants.
Étape 2.1.2.5.3.1.9.1.1
Déplacez .
Étape 2.1.2.5.3.1.9.1.2
Multipliez par .
Étape 2.1.2.5.3.1.9.1.2.1
Élevez à la puissance .
Étape 2.1.2.5.3.1.9.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.5.3.1.9.1.3
Additionnez et .
Étape 2.1.2.5.3.1.9.2
Multipliez par .
Étape 2.1.2.5.3.1.10
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.5.3.1.10.1
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.10.2
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.10.3
Appliquez la propriété distributive.
Étape 2.1.2.5.3.1.11
Simplifiez et associez les termes similaires.
Étape 2.1.2.5.3.1.11.1
Simplifiez chaque terme.
Étape 2.1.2.5.3.1.11.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.2.5.3.1.11.1.2
Multipliez par en additionnant les exposants.
Étape 2.1.2.5.3.1.11.1.2.1
Déplacez .
Étape 2.1.2.5.3.1.11.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.5.3.1.11.1.2.3
Additionnez et .
Étape 2.1.2.5.3.1.11.1.3
Multipliez par .
Étape 2.1.2.5.3.1.11.1.4
Multipliez par en additionnant les exposants.
Étape 2.1.2.5.3.1.11.1.4.1
Déplacez .
Étape 2.1.2.5.3.1.11.1.4.2
Multipliez par .
Étape 2.1.2.5.3.1.11.1.4.2.1
Élevez à la puissance .
Étape 2.1.2.5.3.1.11.1.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.5.3.1.11.1.4.3
Additionnez et .
Étape 2.1.2.5.3.1.11.1.5
Multipliez par .
Étape 2.1.2.5.3.1.11.2
Soustrayez de .
Étape 2.1.2.5.3.1.11.3
Additionnez et .
Étape 2.1.2.5.3.2
Soustrayez de .
Étape 2.1.2.5.3.3
Additionnez et .
Étape 2.1.2.5.4
Simplifiez le numérateur.
Étape 2.1.2.5.4.1
Factorisez à partir de .
Étape 2.1.2.5.4.1.1
Factorisez à partir de .
Étape 2.1.2.5.4.1.2
Factorisez à partir de .
Étape 2.1.2.5.4.1.3
Factorisez à partir de .
Étape 2.1.2.5.4.1.4
Factorisez à partir de .
Étape 2.1.2.5.4.1.5
Factorisez à partir de .
Étape 2.1.2.5.4.2
Réécrivez comme .
Étape 2.1.2.5.4.3
Laissez . Remplacez toutes les occurrences de par .
Étape 2.1.2.5.4.4
Factorisez par regroupement.
Étape 2.1.2.5.4.4.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 2.1.2.5.4.4.1.1
Factorisez à partir de .
Étape 2.1.2.5.4.4.1.2
Réécrivez comme plus
Étape 2.1.2.5.4.4.1.3
Appliquez la propriété distributive.
Étape 2.1.2.5.4.4.1.4
Multipliez par .
Étape 2.1.2.5.4.4.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2.5.4.4.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.2.5.4.4.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2.5.4.4.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.2.5.4.5
Remplacez toutes les occurrences de par .
Étape 2.1.2.5.4.6
Réécrivez comme .
Étape 2.1.2.5.4.7
Remettez dans l’ordre et .
Étape 2.1.2.5.4.8
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.2.5.5
Simplifiez le dénominateur.
Étape 2.1.2.5.5.1
Réécrivez comme .
Étape 2.1.2.5.5.2
Remettez dans l’ordre et .
Étape 2.1.2.5.5.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.2.5.5.4
Appliquez la règle de produit à .
Étape 2.1.2.5.6
Annulez le facteur commun à et .
Étape 2.1.2.5.6.1
Factorisez à partir de .
Étape 2.1.2.5.6.2
Annulez les facteurs communs.
Étape 2.1.2.5.6.2.1
Factorisez à partir de .
Étape 2.1.2.5.6.2.2
Annulez le facteur commun.
Étape 2.1.2.5.6.2.3
Réécrivez l’expression.
Étape 2.1.2.5.7
Annulez le facteur commun à et .
Étape 2.1.2.5.7.1
Factorisez à partir de .
Étape 2.1.2.5.7.2
Annulez les facteurs communs.
Étape 2.1.2.5.7.2.1
Factorisez à partir de .
Étape 2.1.2.5.7.2.2
Annulez le facteur commun.
Étape 2.1.2.5.7.2.3
Réécrivez l’expression.
Étape 2.1.3
La dérivée seconde de par rapport à est .
Étape 2.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Étape 2.2.1
Définissez la dérivée seconde égale à .
Étape 2.2.2
Définissez le numérateur égal à zéro.
Étape 2.2.3
Résolvez l’équation pour .
Étape 2.2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2.3.2
Définissez égal à .
Étape 2.2.3.3
Définissez égal à et résolvez .
Étape 2.2.3.3.1
Définissez égal à .
Étape 2.2.3.3.2
Résolvez pour .
Étape 2.2.3.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.3.3.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.3.3.2.3
Simplifiez .
Étape 2.2.3.3.2.3.1
Réécrivez comme .
Étape 2.2.3.3.2.3.2
Réécrivez comme .
Étape 2.2.3.3.2.3.3
Réécrivez comme .
Étape 2.2.3.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.2.3.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.3.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.3.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.2.1
Divisez chaque terme dans par .
Étape 3.2.2.2
Simplifiez le côté gauche.
Étape 3.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.2.2.2.2
Divisez par .
Étape 3.2.2.3
Simplifiez le côté droit.
Étape 3.2.2.3.1
Divisez par .
Étape 3.2.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.4
Toute racine de est .
Étape 3.2.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez l’expression.
Étape 5.2.1.1
Supprimez les parenthèses.
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Simplifiez le dénominateur.
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Multipliez par .
Étape 5.2.2.3
Additionnez et .
Étape 5.2.2.4
Élevez à la puissance .
Étape 5.2.2.5
Élevez à la puissance .
Étape 5.2.3
Simplifiez le numérateur.
Étape 5.2.3.1
Élevez à la puissance .
Étape 5.2.3.2
Additionnez et .
Étape 5.2.4
Réduisez l’expression en annulant les facteurs communs.
Étape 5.2.4.1
Multipliez par .
Étape 5.2.4.2
Multipliez par .
Étape 5.2.4.3
La division de deux valeurs négatives produit une valeur positive.
Étape 5.2.5
La réponse finale est .
Étape 5.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez l’expression.
Étape 6.2.1.1
Supprimez les parenthèses.
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Multipliez par .
Étape 6.2.2.3
Additionnez et .
Étape 6.2.2.4
Élevez à la puissance .
Étape 6.2.2.5
Élevez à la puissance .
Étape 6.2.3
Simplifiez le numérateur.
Étape 6.2.3.1
Élevez à la puissance .
Étape 6.2.3.2
Additionnez et .
Étape 6.2.4
Simplifiez l’expression.
Étape 6.2.4.1
Multipliez par .
Étape 6.2.4.2
Multipliez par .
Étape 6.2.4.3
Divisez par .
Étape 6.2.5
La réponse finale est .
Étape 6.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Supprimez les parenthèses.
Étape 7.2.2
Simplifiez le numérateur.
Étape 7.2.2.1
Multipliez par .
Étape 7.2.2.2
Multipliez par .
Étape 7.2.3
Simplifiez le dénominateur.
Étape 7.2.3.1
Additionnez et .
Étape 7.2.3.2
Multipliez par .
Étape 7.2.3.3
Soustrayez de .
Étape 7.2.3.4
Élevez à la puissance .
Étape 7.2.3.5
Élevez à la puissance .
Étape 7.2.4
Simplifiez le numérateur.
Étape 7.2.4.1
Élevez à la puissance .
Étape 7.2.4.2
Additionnez et .
Étape 7.2.5
Simplifiez l’expression.
Étape 7.2.5.1
Multipliez par .
Étape 7.2.5.2
Divisez par .
Étape 7.2.6
La réponse finale est .
Étape 7.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez l’expression.
Étape 8.2.1.1
Supprimez les parenthèses.
Étape 8.2.1.2
Multipliez par .
Étape 8.2.2
Simplifiez le dénominateur.
Étape 8.2.2.1
Additionnez et .
Étape 8.2.2.2
Multipliez par .
Étape 8.2.2.3
Soustrayez de .
Étape 8.2.2.4
Élevez à la puissance .
Étape 8.2.2.5
Élevez à la puissance .
Étape 8.2.3
Simplifiez le numérateur.
Étape 8.2.3.1
Élevez à la puissance .
Étape 8.2.3.2
Additionnez et .
Étape 8.2.4
Simplifiez l’expression.
Étape 8.2.4.1
Multipliez par .
Étape 8.2.4.2
Multipliez par .
Étape 8.2.4.3
Placez le signe moins devant la fraction.
Étape 8.2.5
La réponse finale est .
Étape 8.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 9
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le haut sur car est positif
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Concave vers le bas sur car est négatif
Étape 10