Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée seconde.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.1.2
Différenciez.
Étape 1.1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.2
Multipliez par .
Étape 1.1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.5
Additionnez et .
Étape 1.1.1.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.7
Multipliez par .
Étape 1.1.1.3
Élevez à la puissance .
Étape 1.1.1.4
Élevez à la puissance .
Étape 1.1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.1.6
Additionnez et .
Étape 1.1.1.7
Soustrayez de .
Étape 1.1.1.8
Remettez les termes dans l’ordre.
Étape 1.1.2
Déterminez la dérivée seconde.
Étape 1.1.2.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2.2
Différenciez.
Étape 1.1.2.2.1
Multipliez les exposants dans .
Étape 1.1.2.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.1.2.2.1.2
Multipliez par .
Étape 1.1.2.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.2.5
Multipliez par .
Étape 1.1.2.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2.7
Additionnez et .
Étape 1.1.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3.3
Remplacez toutes les occurrences de par .
Étape 1.1.2.4
Différenciez.
Étape 1.1.2.4.1
Multipliez par .
Étape 1.1.2.4.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.4.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.4.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4.5
Simplifiez l’expression.
Étape 1.1.2.4.5.1
Additionnez et .
Étape 1.1.2.4.5.2
Déplacez à gauche de .
Étape 1.1.2.4.5.3
Multipliez par .
Étape 1.1.2.5
Simplifiez
Étape 1.1.2.5.1
Appliquez la propriété distributive.
Étape 1.1.2.5.2
Appliquez la propriété distributive.
Étape 1.1.2.5.3
Simplifiez le numérateur.
Étape 1.1.2.5.3.1
Simplifiez chaque terme.
Étape 1.1.2.5.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.2.5.3.1.2
Réécrivez comme .
Étape 1.1.2.5.3.1.3
Développez à l’aide de la méthode FOIL.
Étape 1.1.2.5.3.1.3.1
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.3.2
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.3.3
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.4
Simplifiez et associez les termes similaires.
Étape 1.1.2.5.3.1.4.1
Simplifiez chaque terme.
Étape 1.1.2.5.3.1.4.1.1
Multipliez par en additionnant les exposants.
Étape 1.1.2.5.3.1.4.1.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.4.1.1.2
Additionnez et .
Étape 1.1.2.5.3.1.4.1.2
Multipliez par .
Étape 1.1.2.5.3.1.4.1.3
Multipliez par .
Étape 1.1.2.5.3.1.4.1.4
Multipliez par .
Étape 1.1.2.5.3.1.4.2
Additionnez et .
Étape 1.1.2.5.3.1.5
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.6
Simplifiez
Étape 1.1.2.5.3.1.6.1
Multipliez par .
Étape 1.1.2.5.3.1.6.2
Multipliez par .
Étape 1.1.2.5.3.1.7
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.8
Simplifiez
Étape 1.1.2.5.3.1.8.1
Multipliez par en additionnant les exposants.
Étape 1.1.2.5.3.1.8.1.1
Déplacez .
Étape 1.1.2.5.3.1.8.1.2
Multipliez par .
Étape 1.1.2.5.3.1.8.1.2.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.8.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.8.1.3
Additionnez et .
Étape 1.1.2.5.3.1.8.2
Multipliez par en additionnant les exposants.
Étape 1.1.2.5.3.1.8.2.1
Déplacez .
Étape 1.1.2.5.3.1.8.2.2
Multipliez par .
Étape 1.1.2.5.3.1.8.2.2.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.8.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.8.2.3
Additionnez et .
Étape 1.1.2.5.3.1.9
Simplifiez chaque terme.
Étape 1.1.2.5.3.1.9.1
Multipliez par .
Étape 1.1.2.5.3.1.9.2
Multipliez par .
Étape 1.1.2.5.3.1.10
Simplifiez chaque terme.
Étape 1.1.2.5.3.1.10.1
Multipliez par en additionnant les exposants.
Étape 1.1.2.5.3.1.10.1.1
Multipliez par .
Étape 1.1.2.5.3.1.10.1.1.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.10.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.10.1.2
Additionnez et .
Étape 1.1.2.5.3.1.10.2
Multipliez par .
Étape 1.1.2.5.3.1.11
Développez à l’aide de la méthode FOIL.
Étape 1.1.2.5.3.1.11.1
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.11.2
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.11.3
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.12
Simplifiez et associez les termes similaires.
Étape 1.1.2.5.3.1.12.1
Simplifiez chaque terme.
Étape 1.1.2.5.3.1.12.1.1
Multipliez par en additionnant les exposants.
Étape 1.1.2.5.3.1.12.1.1.1
Déplacez .
Étape 1.1.2.5.3.1.12.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.12.1.1.3
Additionnez et .
Étape 1.1.2.5.3.1.12.1.2
Multipliez par en additionnant les exposants.
Étape 1.1.2.5.3.1.12.1.2.1
Déplacez .
Étape 1.1.2.5.3.1.12.1.2.2
Multipliez par .
Étape 1.1.2.5.3.1.12.1.2.2.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.12.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.12.1.2.3
Additionnez et .
Étape 1.1.2.5.3.1.12.2
Soustrayez de .
Étape 1.1.2.5.3.1.12.3
Additionnez et .
Étape 1.1.2.5.3.2
Additionnez et .
Étape 1.1.2.5.3.3
Soustrayez de .
Étape 1.1.2.5.4
Simplifiez le numérateur.
Étape 1.1.2.5.4.1
Factorisez à partir de .
Étape 1.1.2.5.4.1.1
Factorisez à partir de .
Étape 1.1.2.5.4.1.2
Factorisez à partir de .
Étape 1.1.2.5.4.1.3
Factorisez à partir de .
Étape 1.1.2.5.4.1.4
Factorisez à partir de .
Étape 1.1.2.5.4.1.5
Factorisez à partir de .
Étape 1.1.2.5.4.2
Réécrivez comme .
Étape 1.1.2.5.4.3
Laissez . Remplacez toutes les occurrences de par .
Étape 1.1.2.5.4.4
Factorisez à l’aide de la méthode AC.
Étape 1.1.2.5.4.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.1.2.5.4.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.1.2.5.4.5
Remplacez toutes les occurrences de par .
Étape 1.1.2.5.5
Annulez le facteur commun à et .
Étape 1.1.2.5.5.1
Factorisez à partir de .
Étape 1.1.2.5.5.2
Annulez les facteurs communs.
Étape 1.1.2.5.5.2.1
Factorisez à partir de .
Étape 1.1.2.5.5.2.2
Annulez le facteur commun.
Étape 1.1.2.5.5.2.3
Réécrivez l’expression.
Étape 1.1.3
La dérivée seconde de par rapport à est .
Étape 1.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée seconde égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Résolvez l’équation pour .
Étape 1.2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 1.2.3.2
Définissez égal à .
Étape 1.2.3.3
Définissez égal à et résolvez .
Étape 1.2.3.3.1
Définissez égal à .
Étape 1.2.3.3.2
Résolvez pour .
Étape 1.2.3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.2.3.3.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.3.3.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.3.3.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.3.3.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2
Étape 2.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2.2
Résolvez .
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3
Le domaine est l’ensemble des nombres réels.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Simplifiez le dénominateur.
Étape 4.2.2.1
Élevez à la puissance .
Étape 4.2.2.2
Additionnez et .
Étape 4.2.2.3
Élevez à la puissance .
Étape 4.2.3
Simplifiez le numérateur.
Étape 4.2.3.1
Élevez à la puissance .
Étape 4.2.3.2
Soustrayez de .
Étape 4.2.4
Simplifiez l’expression.
Étape 4.2.4.1
Multipliez par .
Étape 4.2.4.2
Placez le signe moins devant la fraction.
Étape 4.2.5
La réponse finale est .
Étape 4.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Multipliez par .
Étape 5.2.2
Simplifiez le dénominateur.
Étape 5.2.2.1
Élevez à la puissance .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.2.3
Élevez à la puissance .
Étape 5.2.3
Simplifiez le numérateur.
Étape 5.2.3.1
Élevez à la puissance .
Étape 5.2.3.2
Soustrayez de .
Étape 5.2.4
Réduisez l’expression en annulant les facteurs communs.
Étape 5.2.4.1
Multipliez par .
Étape 5.2.4.2
Annulez le facteur commun à et .
Étape 5.2.4.2.1
Factorisez à partir de .
Étape 5.2.4.2.2
Annulez les facteurs communs.
Étape 5.2.4.2.2.1
Factorisez à partir de .
Étape 5.2.4.2.2.2
Annulez le facteur commun.
Étape 5.2.4.2.2.3
Réécrivez l’expression.
Étape 5.2.5
La réponse finale est .
Étape 5.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
Simplifiez le numérateur.
Étape 6.2.3.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.3.2
Soustrayez de .
Étape 6.2.4
Réduisez l’expression en annulant les facteurs communs.
Étape 6.2.4.1
Multipliez par .
Étape 6.2.4.2
Annulez le facteur commun à et .
Étape 6.2.4.2.1
Factorisez à partir de .
Étape 6.2.4.2.2
Annulez les facteurs communs.
Étape 6.2.4.2.2.1
Factorisez à partir de .
Étape 6.2.4.2.2.2
Annulez le facteur commun.
Étape 6.2.4.2.2.3
Réécrivez l’expression.
Étape 6.2.4.3
Placez le signe moins devant la fraction.
Étape 6.2.5
La réponse finale est .
Étape 6.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
Élevez à la puissance .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
Simplifiez le numérateur.
Étape 7.2.3.1
Élevez à la puissance .
Étape 7.2.3.2
Soustrayez de .
Étape 7.2.4
Multipliez par .
Étape 7.2.5
La réponse finale est .
Étape 7.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 8
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Étape 9