Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Si est continu sur l’intervalle et différentiable sur , au moins un nombre réel existe sur l’intervalle de telle sorte que . Le théorème de la valeur moyenne exprime la relation entre la pente de la tangente à la courbe sur et la pente de la droite passant par les points et .
Si est continu sur
et si différentiable sur ,
alors il existe au moins un point, dans : .
Étape 2
Étape 2.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 2.2
est continu sur .
La fonction est continue.
La fonction est continue.
Étape 3
Étape 3.1
Déterminez la dérivée première.
Étape 3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.2
Évaluez .
Étape 3.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.1.2.3
Multipliez par .
Étape 3.1.3
Évaluez .
Étape 3.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.1.3.3
Multipliez par .
Étape 3.2
La dérivée première de par rapport à est .
Étape 4
Étape 4.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4.2
est continu sur .
La fonction est continue.
La fonction est continue.
Étape 5
La fonction est différentiable sur car la dérivée est continue sur .
La fonction est différentiable.
Étape 6
respecte les deux conditions du théorème de la moyenne. Il est continu sur et différentiable sur .
Aucune solution
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 8
L’équation a une fraction indéfinie.
Indéfini
Étape 9
There are no solution, so there is no value where the tangent line is parallel to the line that passes through the end points and .
No x value found where the tangent line at x is parallel to the line that passes through the end points and
Étape 10