Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Différenciez.
Étape 2.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2
Évaluez .
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.3
Multipliez par .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.3
Multipliez par .
Étape 2.1.4
Évaluez .
Étape 2.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.4.3
Multipliez par .
Étape 2.1.5
Différenciez en utilisant la règle de la constante.
Étape 2.1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.5.2
Additionnez et .
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.3
Multipliez par .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3.3
Multipliez par .
Étape 2.2.4
Évaluez .
Étape 2.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.4.3
Multipliez par .
Étape 2.2.5
Différenciez en utilisant la règle de la constante.
Étape 2.2.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5.2
Additionnez et .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Factorisez le côté gauche de l’équation.
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.1.4
Factorisez à partir de .
Étape 3.2.1.5
Factorisez à partir de .
Étape 3.2.2
Factorisez.
Étape 3.2.2.1
Factorisez à l’aide de la méthode AC.
Étape 3.2.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.2.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.2.2.2
Supprimez les parenthèses inutiles.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à et résolvez .
Étape 3.4.1
Définissez égal à .
Étape 3.4.2
Ajoutez aux deux côtés de l’équation.
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.1.4
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.1.5
Multipliez par .
Étape 4.1.2.1.6
Multipliez par .
Étape 4.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.1.2.2.1
Additionnez et .
Étape 4.1.2.2.2
Soustrayez de .
Étape 4.1.2.2.3
Soustrayez de .
Étape 4.1.2.2.4
Additionnez et .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.3
Remplacez dans pour déterminer la valeur de .
Étape 4.3.1
Remplacez la variable par dans l’expression.
Étape 4.3.2
Simplifiez le résultat.
Étape 4.3.2.1
Simplifiez chaque terme.
Étape 4.3.2.1.1
Élevez à la puissance .
Étape 4.3.2.1.2
Élevez à la puissance .
Étape 4.3.2.1.3
Multipliez par .
Étape 4.3.2.1.4
Élevez à la puissance .
Étape 4.3.2.1.5
Multipliez par .
Étape 4.3.2.1.6
Multipliez par .
Étape 4.3.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.3.2.2.1
Soustrayez de .
Étape 4.3.2.2.2
Soustrayez de .
Étape 4.3.2.2.3
Additionnez et .
Étape 4.3.2.2.4
Additionnez et .
Étape 4.3.2.3
La réponse finale est .
Étape 4.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en soustrayant des nombres.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en soustrayant des nombres.
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez chaque terme.
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Multipliez par .
Étape 8.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 8.2.2.1
Additionnez et .
Étape 8.2.2.2
Soustrayez de .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 9
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, les points d’inflexion sont .
Étape 10