Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Réécrivez comme .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.2
La dérivée première de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée première égale à .
Étape 3.2
Définissez le numérateur égal à zéro.
Étape 3.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 4
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Étape 5
Étape 5.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 5.2
Résolvez .
Étape 5.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.2.2
Simplifiez .
Étape 5.2.2.1
Réécrivez comme .
Étape 5.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.2.2.3
Plus ou moins est .
Étape 6
Après avoir trouvé le point qui rend la dérivée égale à ou indéfinie, l’intervalle pour vérifier où augmente et diminue est .
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Élevez à la puissance .
Étape 7.2.2
Annulez le facteur commun de .
Étape 7.2.2.1
Annulez le facteur commun.
Étape 7.2.2.2
Réécrivez l’expression.
Étape 7.2.3
Multipliez par .
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Un à n’importe quelle puissance est égal à un.
Étape 8.2.2
Annulez le facteur commun de .
Étape 8.2.2.1
Annulez le facteur commun.
Étape 8.2.2.2
Réécrivez l’expression.
Étape 8.2.3
Multipliez par .
Étape 8.2.4
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 9
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Diminue sur :
Étape 10