Calcul infinitésimal Exemples

Trouver les points d'inflexion f(x)=x^4+x^3-3x^2+9
Étape 1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Additionnez et .
Étape 1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3.3
Multipliez par .
Étape 1.2.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.4.3
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Factorisez à partir de .
Étape 2.2.1.3
Factorisez à partir de .
Étape 2.2.1.4
Factorisez à partir de .
Étape 2.2.1.5
Factorisez à partir de .
Étape 2.2.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1.1
Multipliez par .
Étape 2.2.2.1.1.2
Réécrivez comme plus
Étape 2.2.2.1.1.3
Appliquez la propriété distributive.
Étape 2.2.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.2.2.2
Supprimez les parenthèses inutiles.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.2.1.2
Divisez par .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les points où se trouve la dérivée seconde .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1
Appliquez la règle de produit à .
Étape 3.1.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 3.1.2.1.3
Élevez à la puissance .
Étape 3.1.2.1.4
Appliquez la règle de produit à .
Étape 3.1.2.1.5
Un à n’importe quelle puissance est égal à un.
Étape 3.1.2.1.6
Élevez à la puissance .
Étape 3.1.2.1.7
Appliquez la règle de produit à .
Étape 3.1.2.1.8
Un à n’importe quelle puissance est égal à un.
Étape 3.1.2.1.9
Élevez à la puissance .
Étape 3.1.2.1.10
Associez et .
Étape 3.1.2.1.11
Placez le signe moins devant la fraction.
Étape 3.1.2.2
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.2.1
Multipliez par .
Étape 3.1.2.2.2
Multipliez par .
Étape 3.1.2.2.3
Multipliez par .
Étape 3.1.2.2.4
Multipliez par .
Étape 3.1.2.2.5
Écrivez comme une fraction avec le dénominateur .
Étape 3.1.2.2.6
Multipliez par .
Étape 3.1.2.2.7
Multipliez par .
Étape 3.1.2.2.8
Réorganisez les facteurs de .
Étape 3.1.2.2.9
Multipliez par .
Étape 3.1.2.2.10
Multipliez par .
Étape 3.1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.1.2.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.4.1
Multipliez par .
Étape 3.1.2.4.2
Multipliez par .
Étape 3.1.2.5
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.5.1
Additionnez et .
Étape 3.1.2.5.2
Soustrayez de .
Étape 3.1.2.5.3
Additionnez et .
Étape 3.1.2.6
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Élevez à la puissance .
Étape 3.3.2.1.2
Élevez à la puissance .
Étape 3.3.2.1.3
Élevez à la puissance .
Étape 3.3.2.1.4
Multipliez par .
Étape 3.3.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Soustrayez de .
Étape 3.3.2.2.2
Soustrayez de .
Étape 3.3.2.2.3
Additionnez et .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Additionnez et .
Étape 7.2.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Étape 9