Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.3
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Divisez par .
Étape 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Simplifiez chaque terme.
Étape 3.1.2.1.1
Réécrivez comme .
Étape 3.1.2.1.1.1
Utilisez pour réécrire comme .
Étape 3.1.2.1.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.1.2.1.1.3
Associez et .
Étape 3.1.2.1.1.4
Annulez le facteur commun à et .
Étape 3.1.2.1.1.4.1
Factorisez à partir de .
Étape 3.1.2.1.1.4.2
Annulez les facteurs communs.
Étape 3.1.2.1.1.4.2.1
Factorisez à partir de .
Étape 3.1.2.1.1.4.2.2
Annulez le facteur commun.
Étape 3.1.2.1.1.4.2.3
Réécrivez l’expression.
Étape 3.1.2.1.1.4.2.4
Divisez par .
Étape 3.1.2.1.2
Élevez à la puissance .
Étape 3.1.2.1.3
Réécrivez comme .
Étape 3.1.2.1.3.1
Utilisez pour réécrire comme .
Étape 3.1.2.1.3.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.1.2.1.3.3
Associez et .
Étape 3.1.2.1.3.4
Annulez le facteur commun de .
Étape 3.1.2.1.3.4.1
Annulez le facteur commun.
Étape 3.1.2.1.3.4.2
Réécrivez l’expression.
Étape 3.1.2.1.3.5
Évaluez l’exposant.
Étape 3.1.2.1.4
Multipliez par .
Étape 3.1.2.2
Soustrayez de .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Étape 3.3.2.1
Simplifiez chaque terme.
Étape 3.3.2.1.1
Appliquez la règle de produit à .
Étape 3.3.2.1.2
Élevez à la puissance .
Étape 3.3.2.1.3
Multipliez par .
Étape 3.3.2.1.4
Réécrivez comme .
Étape 3.3.2.1.4.1
Utilisez pour réécrire comme .
Étape 3.3.2.1.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.1.4.3
Associez et .
Étape 3.3.2.1.4.4
Annulez le facteur commun à et .
Étape 3.3.2.1.4.4.1
Factorisez à partir de .
Étape 3.3.2.1.4.4.2
Annulez les facteurs communs.
Étape 3.3.2.1.4.4.2.1
Factorisez à partir de .
Étape 3.3.2.1.4.4.2.2
Annulez le facteur commun.
Étape 3.3.2.1.4.4.2.3
Réécrivez l’expression.
Étape 3.3.2.1.4.4.2.4
Divisez par .
Étape 3.3.2.1.5
Élevez à la puissance .
Étape 3.3.2.1.6
Appliquez la règle de produit à .
Étape 3.3.2.1.7
Élevez à la puissance .
Étape 3.3.2.1.8
Multipliez par .
Étape 3.3.2.1.9
Réécrivez comme .
Étape 3.3.2.1.9.1
Utilisez pour réécrire comme .
Étape 3.3.2.1.9.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.1.9.3
Associez et .
Étape 3.3.2.1.9.4
Annulez le facteur commun de .
Étape 3.3.2.1.9.4.1
Annulez le facteur commun.
Étape 3.3.2.1.9.4.2
Réécrivez l’expression.
Étape 3.3.2.1.9.5
Évaluez l’exposant.
Étape 3.3.2.1.10
Multipliez par .
Étape 3.3.2.2
Soustrayez de .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
L’élévation de à toute puissance positive produit .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Étape 9