Calcul infinitésimal Exemples

Trouver les points d'inflexion f(x)=x^5-10x^3-8
Étape 1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Additionnez et .
Étape 1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3.3
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.5.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les points où se trouve la dérivée seconde .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 3.1.2.1.2
L’élévation de à toute puissance positive produit .
Étape 3.1.2.1.3
Multipliez par .
Étape 3.1.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.2.1
Additionnez et .
Étape 3.1.2.2.2
Soustrayez de .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Réécrivez comme .
Étape 3.3.2.1.2
Élevez à la puissance .
Étape 3.3.2.1.3
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1
Factorisez à partir de .
Étape 3.3.2.1.3.2
Réécrivez comme .
Étape 3.3.2.1.4
Extrayez les termes de sous le radical.
Étape 3.3.2.1.5
Réécrivez comme .
Étape 3.3.2.1.6
Élevez à la puissance .
Étape 3.3.2.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.7.1
Factorisez à partir de .
Étape 3.3.2.1.7.2
Réécrivez comme .
Étape 3.3.2.1.8
Extrayez les termes de sous le radical.
Étape 3.3.2.1.9
Multipliez par .
Étape 3.3.2.2
Soustrayez de .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Remplacez la variable par dans l’expression.
Étape 3.5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.1
Appliquez la règle de produit à .
Étape 3.5.2.1.2
Élevez à la puissance .
Étape 3.5.2.1.3
Réécrivez comme .
Étape 3.5.2.1.4
Élevez à la puissance .
Étape 3.5.2.1.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.5.1
Factorisez à partir de .
Étape 3.5.2.1.5.2
Réécrivez comme .
Étape 3.5.2.1.6
Extrayez les termes de sous le radical.
Étape 3.5.2.1.7
Multipliez par .
Étape 3.5.2.1.8
Appliquez la règle de produit à .
Étape 3.5.2.1.9
Élevez à la puissance .
Étape 3.5.2.1.10
Réécrivez comme .
Étape 3.5.2.1.11
Élevez à la puissance .
Étape 3.5.2.1.12
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.12.1
Factorisez à partir de .
Étape 3.5.2.1.12.2
Réécrivez comme .
Étape 3.5.2.1.13
Extrayez les termes de sous le radical.
Étape 3.5.2.1.14
Multipliez par .
Étape 3.5.2.1.15
Multipliez par .
Étape 3.5.2.2
Additionnez et .
Étape 3.5.2.3
La réponse finale est .
Étape 3.6
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.7
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Multipliez par .
Étape 8.2.2
Soustrayez de .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Étape 10