Calcul infinitésimal Exemples

Trouver les points critiques y=x^2-8 logarithme népérien de x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
La dérivée de par rapport à est .
Étape 1.1.2.3
Associez et .
Étape 1.1.2.4
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1.1
Déplacez .
Étape 2.3.2.1.1.2
Multipliez par .
Étape 2.3.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.2.2
Annulez le facteur commun.
Étape 2.3.2.1.2.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Multipliez par .
Étape 2.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.1.2
Divisez par .
Étape 2.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1
Divisez par .
Étape 2.4.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.4.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.4.1
Réécrivez comme .
Étape 2.4.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.4.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Élevez à la puissance .
Étape 4.1.2.2
Simplifiez en déplaçant dans le logarithme.
Étape 4.1.2.3
Élevez à la puissance .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Le logarithme naturel d’un nombre négatif est indéfini.
Indéfini
Indéfini
Étape 4.3
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Le logarithme naturel de zéro est indéfini.
Indéfini
Indéfini
Étape 4.4
Indiquez tous les points.
Étape 5